skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Intermetallic Compound Re 2 Ga 9 Ge with Re- and Ge-Embedded Gallium Clusters: Synthesis, Crystal Structure, Chemical Bonding, and Physical Properties
Award ID(s):
1955585
PAR ID:
10319656
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Inorganic Chemistry
Volume:
61
Issue:
1
ISSN:
0020-1669
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract During the search for transition metal‐free alkyne hydrogenation catalysts, two new ternary Ca−Ga−Ge phases, Ca2Ga4Ge6(Cmc21, a=4.1600(10) Å, b=23.283(5) Å, c=10.789(3) Å) and Ca3Ga4Ge6(C2/m, a=24.063(2) Å, b=4.1987(4) Å, c=10.9794(9) Å, β=91.409(4)°), were discovered. These compounds are isostructural to the previously established Yb2Ga4Ge6and Yb3Ga4Ge6analogues, and according to Zintl‐Klemm counting rules, consist of anionic [Ga4Ge6]4−and [Ga4Ge6]6−frameworks in which every Ga and Ge atom would have a formal octet with no Ga−Ga or Ga−Ge π‐bonding. These compounds are metallic, based on temperature dependent electrical resistivity and thermopower measurements for Ca3Ga4Ge6, along with density functional theory calculations for both phases. Unlike the highly active 13‐layer trigonal CaGaGe phase, these new compounds exhibit minimal activity in the semi/full alkyne hydrogenation of phenylacetylene, which is consistent with previous observations that the lack of a formal octet for framework atoms is essential for catalysis in these Zintl‐Klemm compounds. 
    more » « less
  2. Abstract Single crystals of U2Mn3Ge and U2Fe3Ge with a Kagome lattice structure were synthesized using a high-temperature self-flux crystal growth method. The physical properties of these crystals were characterized through measurements of resistivity, magnetism, and specific heat. U2Fe3Ge exhibits ferromagnetic ground state and anomalous Hall effect, and U2Mn3Ge demonstrates a complex magnetic structure. Both compounds exhibit large Sommerfeld coefficient, indicating coexistence of heavy Fermion behaviour with magnetism. Our results suggest that this U2TM3Ge (TM = Mn, Fe, Co) family is a promising platform to investigate the interplay of magnetism, Kondo physics and the Kagome lattice. 
    more » « less
  3. null (Ed.)