skip to main content

Title: Applicability of Taylor’s hypothesis during Parker Solar Probe perihelia
We investigate the validity of Taylor’s hypothesis (TH) in the analysis of velocity and magnetic field fluctuations in Alfvénic solar wind streams measured by Parker Solar Probe (PSP) during the first four encounters. The analysis is based on a recent model of the spacetime correlation of magnetohydrodynamic (MHD) turbulence, which has been validated in high-resolution numerical simulations of strong reduced MHD turbulence. We use PSP velocity and magnetic field measurements from 24 h intervals selected from each of the first four encounters. The applicability of TH is investigated by measuring the parameter ϵ  =  δu 0 /√2 V ⊥ , which quantifies the ratio between the typical speed of large-scale fluctuations, δu 0 , and the local perpendicular PSP speed in the solar wind frame, V ⊥ . TH is expected to be applicable for ϵ ≲ 0.5 when PSP is moving nearly perpendicular to the local magnetic field in the plasma frame, irrespective of the Alfvén Mach number M A = V SW ∕ V A , where V SW and V A are the local solar wind and Alfvén speed, respectively. For the four selected solar wind intervals, we find that between 10 and 60% of the time, more » the parameter ϵ is below 0.2 and the sampling angle (between the spacecraft velocity in the plasma frame and the local magnetic field) is greater than 30°. For angles above 30°, the sampling direction is sufficiently oblique to allow one to reconstruct the reduced energy spectrum E ( k ⊥ ) of magnetic fluctuations from its measured frequency spectra. The spectral indices determined from power-law fits of the measured frequency spectrum accurately represent the spectral indices associated with the underlying spatial spectrum of turbulent fluctuations in the plasma frame. Aside from a frequency broadening due to large-scale sweeping that requires careful consideration, the spatial spectrum can be recovered to obtain the distribution of fluctuation’s energy across scales in the plasma frame. « less
Authors:
; ; ;
Award ID(s):
1752827
Publication Date:
NSF-PAR ID:
10319704
Journal Name:
Astronomy & Astrophysics
Volume:
650
ISSN:
0004-6361
Sponsoring Org:
National Science Foundation
More Like this
  1. Aims. An interplanetary coronal mass ejection (ICME) event was observed by the Solar Orbiter at 0.8 AU on 2020 April 19 and by Wind at 1 AU on 2020 April 20. Futhermore, an interplanetary shock wave was driven in front of the ICME. Here, we focus on the transmission of the magnetic fluctuations across the shock and we analyze the characteristic wave modes of solar wind turbulence in the vicinity of the shock observed by both spacecraft. Methods. The observed ICME event is characterized by a magnetic helicity-based technique. The ICME-driven shock normal was determined by magnetic coplanarity method formore »the Solar Orbiter and using a mixed plasma and field approach for Wind. The power spectra of magnetic field fluctuations were generated by applying both a fast Fourier transform and Morlet wavelet analysis. To understand the nature of waves observed near the shock, we used the normalized magnetic helicity as a diagnostic parameter. The wavelet-reconstructed magnetic field fluctuation hodograms were used to further study the polarization properties of waves. Results. We find that the ICME-driven shock observed by Solar Orbiter and Wind is a fast, forward oblique shock with a more perpendicular shock angle at the Wind position. After the shock crossing, the magnetic field fluctuation power increases. Most of the magnetic field fluctuation power resides in the transverse fluctuations. In the vicinity of the shock, both spacecraft observe right-hand polarized waves in the spacecraft frame. The upstream wave signatures fall within a relatively broad and low frequency band, which might be attributed to low frequency MHD waves excited by the streaming particles. For the downstream magnetic wave activity, we find oblique kinetic Alfvén waves with frequencies near the proton cyclotron frequency in the spacecraft frame. The frequency of the downstream waves increases by a factor of ∼7–10 due to the shock compression and the Doppler effect.« less
  2. Abstract Parker Solar Probe (PSP) observed predominately Alfvénic fluctuations in the solar wind near the Sun where the magnetic field tends to be radially aligned. In this paper, two magnetic-field-aligned solar wind flow intervals during PSP’s first two orbits are analyzed. Observations of these intervals indicate strong signatures of parallel/antiparallel-propagating waves. We utilize multiple analysis techniques to extract the properties of the observed waves in both magnetohydrodynamic (MHD) and kinetic scales. At the MHD scale, outward-propagating Alfvén waves dominate both intervals, and outward-propagating fast magnetosonic waves present the second-largest contribution in the spectral energy density. At kinetic scales, we identifymore »the circularly polarized plasma waves propagating near the proton gyrofrequency in both intervals. However, the sense of magnetic polarization in the spacecraft frame is observed to be opposite in the two intervals, although they both possess a sunward background magnetic field. The ion-scale plasma wave observed in the first interval can be either an inward-propagating ion cyclotron wave (ICW) or an outward-propagating fast-mode/whistler wave in the plasma frame, while in the second interval it can be explained as an outward ICW or inward fast-mode/whistler wave. The identification of the exact kinetic wave mode is more difficult to confirm owing to the limited plasma data resolution. The presence of ion-scale waves near the Sun suggests that ion cyclotron resonance may be one of the ubiquitous kinetic physical processes associated with small-scale magnetic fluctuations and kinetic instabilities in the inner heliosphere.« less
  3. Abstract The Parker Solar Probe (PSP) entered a region of sub-Alfvénic solar wind during encounter 8, and we present the first detailed analysis of low-frequency turbulence properties in this novel region. The magnetic field and flow velocity vectors were highly aligned during this interval. By constructing spectrograms of the normalized magnetic helicity, cross-helicity, and residual energy, we find that PSP observed primarily Alfvénic fluctuations, a consequence of the highly field-aligned flow that renders quasi-2D fluctuations unobservable to PSP. We extend Taylor’s hypothesis to sub- and super-Alfvénic flows. Spectra for the fluctuating forward and backward Elsässer variables ( z ± ,more »respectively) are presented, showing that z + modes dominate z − by an order of magnitude or more, and the z + spectrum is a power law in frequency (parallel wavenumber) f −3/2 ( k ∥ − 3 / 2 ) compared to the convex z − spectrum with f −3/2 ( k ∥ − 3 / 2 ) at low frequencies, flattening around a transition frequency (at which the nonlinear and Alfvén timescales are balanced) to f −1.25 at higher frequencies. The observed spectra are well fitted using a spectral theory for nearly incompressible magnetohydrodynamics assuming a wavenumber anisotropy k ⊥ ∼ k ∥ 3 / 4 , that the z + fluctuations experience primarily nonlinear interactions, and that the minority z − fluctuations experience both nonlinear and Alfvénic interactions with z + fluctuations. The density spectrum is a power law that resembles neither the z ± spectra nor the compressible magnetic field spectrum, suggesting that these are advected entropic rather than magnetosonic modes and not due to the parametric decay instability. Spectra in the neighboring modestly super-Alfvénic intervals are similar.« less
  4. Abstract During its 10th orbit around the Sun, the Parker Solar Probe sampled two intervals where the local Alfvén speed exceeded the solar wind speed, lasting more than 10 hours in total. In this paper, we analyze the turbulence and wave properties during these periods. The turbulence is observed to be Alfvénic and unbalanced, dominated by outward-propagating modes. The power spectrum of the outward-propagating Elsässer z + mode steepens at high frequencies while that of the inward-propagating z − mode flattens. The observed Elsässer spectra can be explained by the nearly incompressible (NI) MHD turbulence model with both 2D andmore »Alfvénic components. The modeling results show that the z + spectra are dominated by the NI/slab component, and the 2D component mainly affects the z − spectra at low frequencies. An MHD wave decomposition based on an isothermal closure suggests that outward-propagating Alfvén and fast magnetosonic wave modes are prevalent in the two sub-Alfvénic intervals, while the slow magnetosonic modes dominate the super-Alfvénic interval in between. The slow modes occur where the wavevector is nearly perpendicular to the local mean magnetic field, corresponding to nonpropagating pressure-balanced structures. The alternating forward and backward slow modes may also be features of magnetic reconnection in the near-Sun heliospheric current sheet.« less
  5. Abstract We study anisotropic magnetohydrodynamic (MHD) turbulence in the slow solar wind measured by Parker Solar Probe (PSP) and Solar Orbiter (SolO) during its first orbit from the perspective of variance anisotropy and correlation anisotropy. We use the Belcher & Davis approach (M1) and a new method (M2) that decomposes a fluctuating vector into parallel and perpendicular fluctuating vectors. M1 and M2 calculate the transverse and parallel turbulence components relative to the mean magnetic field direction. The parallel turbulence component is regarded as compressible turbulence, and the transverse turbulence component as incompressible turbulence, which can be either Alfvénic or 2D.more »The transverse turbulence energy is calculated from M1 and M2, and the transverse correlation length from M2. We obtain the 2D and slab turbulence energy and the corresponding correlation lengths from those transverse turbulence components that satisfy an angle between the mean solar wind flow speed and mean magnetic field θ UB of either (i) 65° < θ UB < 115° or (ii) 0° < θ UB < 25° (155° < θ UB < 180°), respectively. We find that the 2D turbulence component is not typically observed by PSP near perihelion, but the 2D component dominates turbulence in the inner heliosphere. We compare the detailed theoretical results of a nearly incompressible MHD turbulence transport model with the observed results of PSP and SolO measurements, finding good agreement between them.« less