skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electrically Powered Locomotion of Dual-Nature Colloid-Hedgehog and Colloid-Umbilic Topological and Elastic Dipoles in Liquid Crystals
Award ID(s):
1810513
PAR ID:
10319722
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Langmuir
Volume:
38
Issue:
2
ISSN:
0743-7463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report a colloid–polymer model system with tunable bridging interactions for microscopic studies of structure and dynamics using confocal imaging. The interactions between trifluoroethyl methacrylate-co-tert-butyl methacrylate copolymer particles and poly(acrylic acid) (PAA) polymers were controllable via polymer concentration and pH. The strength of adsorption of PAA on the particles, driven by pH-dependent interactions with polymer brush stabilizers on the particle surfaces, was tuned via solution pH. Particle–polymer suspensions formulated at low pH, where polymers strongly adsorbed to the particles, contained clusters or weak gels at particle volume fractions of ϕ = 0.15 and ϕ = 0.40. At high pH, where the PAA only weakly adsorbed to the particle surface, particles largely remained dispersed, and the suspensions behaved as a dense fluid. The ability to visualize the suspension structure is likely to provide insight into the role of polymer-driven bridging interactions in the behavior of colloidal suspensions. 
    more » « less