skip to main content


Title: Aggregation and gelation in a tunable aqueous colloid–polymer bridging system

We report a colloid–polymer model system with tunable bridging interactions for microscopic studies of structure and dynamics using confocal imaging. The interactions between trifluoroethyl methacrylate-co-tert-butyl methacrylate copolymer particles and poly(acrylic acid) (PAA) polymers were controllable via polymer concentration and pH. The strength of adsorption of PAA on the particles, driven by pH-dependent interactions with polymer brush stabilizers on the particle surfaces, was tuned via solution pH. Particle–polymer suspensions formulated at low pH, where polymers strongly adsorbed to the particles, contained clusters or weak gels at particle volume fractions of ϕ = 0.15 and ϕ = 0.40. At high pH, where the PAA only weakly adsorbed to the particle surface, particles largely remained dispersed, and the suspensions behaved as a dense fluid. The ability to visualize the suspension structure is likely to provide insight into the role of polymer-driven bridging interactions in the behavior of colloidal suspensions.

 
more » « less
Award ID(s):
1803728
NSF-PAR ID:
10470598
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
157
Issue:
11
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    The thermomechanical behavior of polymer nanocomposites is mostly governed by interfacial properties which rely on particle–polymer interactions, particle loading, and dispersion state. We recently showed that poly(methyl methacrylate) (PMMA) adsorbed nanoparticles in poly(ethylene oxide) (PEO) matrices displayed an unusual thermal stiffening response. The molecular origin of this unique stiffening behavior resulted from the enhanced PEO mobility within glassy PMMA chains adsorbed on nanoparticles. In addition, dynamic asymmetry and chemical heterogeneities existing in the interfacial layers around particles were shown to improve the reinforcement of composites as a result of good interchain mixing. Here, the role of chain rigidity in this interfacially controlled reinforcement in PEO composites is investigated. We show that particles adsorbed with less rigid polymers improve the mechanical properties of composites. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 9–14

     
    more » « less
  2. It is well-known that particle–polymer interactions strongly control the adsorption and conformations of adsorbed chains. Interfacial layers around nanoparticles consisting of adsorbed and free matrix chains have been extensively studied to reveal their rheological contribution to the behavior of nanocomposites. This work focuses on how chemical heterogeneity of the interfacial layers around the particles governs the microscopic mechanical properties of polymer nanocomposites. Low glass-transition temperature composites consisting of poly(vinyl acetate) coated silica nanoparticles in poly(ethylene oxide) and poly(methyl acrylate) matrices, and of poly(methyl methacrylate) silica nanoparticles in a poly(methyl acrylate) matrix are examined using rheology and X-ray photon correlation spectroscopy. We demonstrate that miscibility between the adsorbed and matrix chains in the interfacial layers led to the observed unusual reinforcement. We suggest that packing of chains in the interfacial regions may also contribute to the reinforcement in the polymer nanocomposites. These features may be used in designing mechanically adaptive composites operating at varying temperature. 
    more » « less
  3. The rheology of suspensions of rings (tori) rotating in an unbounded low Reynolds number simple shear flow is calculated using numerical simulations at dilute particle number densities ( n ≪ 1 ). Suspensions of non-Brownian rings are studied by computing pair interactions that include hydrodynamic interactions modeled using slender body theory and particle collisions modeled using a short-range repulsive force. Particle contact and hydrodynamic interactions were found to have comparable influences on the steady-state Jeffery orbit distribution. The average tilt of the ring away from the flow-vorticity plane increased during pairwise interactions compared to the tilt associated with Jeffery rotation and the steady-state orbit distribution. Particle stresses associated with the increased tilt during the interaction were found to be comparable to the stresses induced directly by particle contact forces and the hydrodynamic velocity disturbances of other particles. The hydrodynamic diffusivity coefficients in the gradient and vorticity directions were also obtained and were found to be two orders of magnitude larger than the corresponding values in fiber suspensions at the same particle concentrations. Rotary Brownian dynamics simulations of isolated Brownian rings were used to understand the shear rate dependence of suspension rheology. The orbit distribution observed in the regime of weak Brownian motion, P e ≫ ϕ T − 3, was surprisingly similar to that obtained from pairwise interaction calculations of non-Brownian rings. Here, the Peclet number P e is the ratio of the shear rate and the rotary diffusivity of the particle and ϕ T is the effective inverse-aspect ratio of the particle (approximately equal to 2 π times the inverse of its non-dimensional Jeffery time period). Thus, the rheology results obtained from pairwise interactions should retain accuracy even for weakly Brownian rings ( n ≪ 1 and ϕ T − 3 ≪ P e ). 
    more » « less
  4. In spite of their high surface charge (zeta potential ζ = +34 mV), aqueous suspensions of portlandite (calcium hydroxide: Ca(OH) 2 ) exhibit a strong tendency to aggregate, and thereby present unstable suspensions. While a variety of commercial dispersants seek to modify the suspension stability and rheology ( e.g. , yield stress, viscosity), it remains unclear how the performance of electrostatically and/or electrosterically based additives is affected in aqueous environments having either a high ionic strength and/or a pH close to the particle's isoelectric point (IEP). We show that the high native ionic strength (pH ≈ 12.6, IEP: pH ≈ 13) of saturated portlandite suspensions strongly screens electrostatic forces (Debye length: κ −1 = 1.2 nm). As a result, coulombic repulsion alone is insufficient to mitigate particle aggregation and affect rheology. However, a longer-range geometrical particle–particle exclusion that arises from electrosteric hindrance caused by the introduction of comb polyelectrolyte dispersants is very effective at altering the rheological properties and fractal structuring of suspensions. As a result, comb-like dispersants that stretch into the solvent reduce the suspension's yield stress by 5× at similar levels of adsorption as compared to linear dispersants, thus enhancing the critical solid loading ( i.e. , at which jamming occurs) by 1.4×. Significantly, the behavior of diverse dispersants is found to be inherently related to the thickness of the adsorbed polymer layer on particle surfaces. These outcomes inform the design of dispersants for concentrated suspensions that present strong charge screening behavior. 
    more » « less
  5. Herein we report the synthesis of ternary statistical methacrylate copolymers comprising cationic ammonium (amino-ethyl methacrylate: AEMA), carboxylic acid (propanoic acid methacrylate: PAMA) and hydrophobic (ethyl methacrylate: EMA) side chain monomers, to study the functional role of anionic groups on their antimicrobial and hemolytic activities as well as the conformation of polymer chains. The hydrophobic monomer EMA was maintained at 40 mol% in all the polymers, with different percentages of cationic ammonium (AEMA) and anionic carboxylate (PAMA) side chains, resulting in different total net charge for the polymers. The antimicrobial and hemolytic activities of the copolymer were determined by the net charge of +3 or larger, suggesting that there was no distinct effect of the anionic carboxylate groups on the antimicrobial and hemolytic activities of the copolymers. However, the pH titration and atomic molecular dynamics simulations suggest that anionic groups may play a strong role in controlling the polymer conformation. This was achieved via formation of salt bridges between cationic and anionic groups, transiently crosslinking the polymer chain allowing dynamic switching between compact and extended conformations. These results suggest that inclusion of functional groups in general, other than the canonical hydrophobic and cationic groups in antimicrobial agents, may have broader implications in acquiring functional structures required for adequate antimicrobial activity. In order to explain the implications, we propose a molecular model in which formation of intra-chain, transient salt bridges, due to the presence of both anionic and cationic groups along the polymer, may function as “adhesives” which facilitate compact packing of the polymer chain to enable functional group interaction but without rigidly locking down the overall polymer structure, which may adversely affect their functional roles. 
    more » « less