skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Advancing Organic Semiconductors through Computational Research
Organic semiconductors form the cornerstone of modern technologies, powering the screens we use in many of our digital devices. On top of this, they are also key materials in organic solar cells and medical biosensing devices, amongst other innovative applications. Dr Seyhan Salman and her colleagues at the Clark Atlanta University have been investigating organic semiconductors using advanced computational methods. Through this, her team hopes to pave the way to developing even more impressive technologies, which will benefit society in myriad ways.  more » « less
Award ID(s):
1955299
PAR ID:
10319779
Author(s) / Creator(s):
Date Published:
Journal Name:
Scientia
ISSN:
0104-1770
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Functional oxides are an untapped resource for futuristic devices and functionalities. These functionalities can range from high temperature superconductivity to multiferroicity and novel catalytic schemes. The most prominent route for transforming these ideas from a single device in the lab to practical technologies is by integration with semiconductors. Moreover, coupling oxides with semiconductors can herald new and unexpected functionalities that exist in neither of the individual materials. Therefore, oxide epitaxy on semiconductors provides a materials platform for novel device technologies. As oxides and semiconductors exhibit properties that are complementary to one another, epitaxial heterostructures comprised of the two are uniquely poised to deliver rich functionalities. This review discusses recent advancements in the growth of epitaxial oxides on semiconductors, and the electronic and physical structure of their interfaces. Leaning on these fundamentals and practicalities, the material behavior and functionality of semiconductor–oxide heterostructures is discussed, and their potential as device building blocks is highlighted. The culmination of this discussion is a review of recent advances in the development of prototype devices based on semiconductor–oxide heterostructures, in areas ranging from silicon photonics to photocatalysis. This overview is intended to stimulate ideas for new concepts of functional devices and lay the groundwork for their realization. 
    more » « less
  2. The weak intermolecular interactions inherent in organic semiconductors make them susceptible to defect formation, resulting in localized states in the band-gap that can trap charge carriers at different timescales. Charge carrier trapping is thus ubiquitous in organic semiconductors and can have a profound impact on their performance when incorporated into optoelectronic devices. This review provides a comprehensive overview on the phenomenon of charge carrier trapping in organic semiconductors, with emphasis on the underlying physical processes and its impact on device operation. We first define the concept of charge carrier trap, then outline and categorize different origins of traps. Next, we discuss their impact on the mechanism of charge transport and the performance of electronic devices. Progress in the filed in terms of characterization and detection of charge carrier traps is reviewed together with insights on future direction of research. Finally, a discussion on the exploitation of traps in memory and sensing applications is provided. 
    more » « less
  3. Abstract Research at the University of Washington regarding organic semiconductors is reviewed, covering four major topics: electro‐optics, organic light emitting diodes, organic field‐effect transistors, and organic solar cells. Underlying principles of materials design are demonstrated along with efforts toward unlocking the full potential of organic semiconductors. Finally, opinions on future research directions are presented, with a focus on commercial competency, environmental sustainability, and scalability of organic‐semiconductor‐based devices. 
    more » « less
  4. Abstract Organic semiconductors have sparked interest as flexible, solution processable, and chemically tunable electronic materials. Improvements in charge carrier mobility put organic semiconductors in a competitive position for incorporation in a variety of (opto‐)electronic applications. One example is the organic field‐effect transistor (OFET), which is the fundamental building block of many applications based on organic semiconductors. While the semiconductor performance improvements opened up the possibilities for applying organic materials as active components in fast switching electrical devices, the ability to make good electrical contact hinders further development of deployable electronics. Additionally, inefficient contacts represent serious bottlenecks in identifying new electronic materials by inhibiting access to their intrinsic properties or providing misleading information. Recent work focused on the relationships of contact resistance with device architecture, applied voltage, metal and dielectric interfaces, has led to a steady reduction in contact resistance in OFETs. While impressive progress was made, contact resistance is still above the limits necessary to drive devices at the speed required for many active electronic components. Here, the origins of contact resistance and recent improvement in organic transistors are presented, with emphasis on the electric field and geometric considerations of charge injection in OFETs. 
    more » « less
  5. Abstract High‐mobility crystalline organic semiconductors are important for applications in advanced organic electronics and photonics. Photogeneration and transport of mobile photocarriers in these materials, although very important, remain underexplored. The photo‐Hall effect can be used to address the fundamental charge transport properties of these functional molecular materials, without the need for fabricating complex transistor devices or chemical doping. Here, a photo‐Hall effect is demonstrated in organic semiconductors, using a benchmark molecular system rubrene as an experimental platform. It is shown that this technique can be used to directly measure the charge carrier mobility and photocarrier density, decouple the surface and bulk transport phenomena, and thus significantly deepen the understanding of the mechanism of photoconductivity in these high‐performance molecular materials. 
    more » « less