Southeastern United States frequently experience tornadoes, necessitating rapid response and recovery efforts by state and federal agencies. Accurate information about the extent and severity of tornado-induced damage, especially debris volume and locations, is crucial for these efforts. This study, therefore, focuses on post-tornado debris assessment in Leon County, Florida, which was hit by two EF-2 and an EF-1 tornadoes in May 2024. Using satellite imagery from the Planetscope satellite and Geographic Information Systems (GIS), a macro-level evaluation of tornado debris impact was conducted, particularly on roadways and impacted communities. The proposed approach includes an evaluation of the overall post-tornado debris impact across the entire county and its population, and a detailed analysis of debris impact on roadways and its effect on accessibility. Spectral indices from satellite images, specifically the Normalized Difference Vegetation Index (NDVI), were utilized to derive assessment parameters. By comparing NDVI values from pre- and post-tornado images, we analyzed changes in vegetation and debris accumulation along roadway segments leading to possible roadway closures. This integrated method provides critical insights for enhancing disaster response and recovery operations in tornado-prone regions. Findings indicate that high volumes of vegetative debris were present in the south-central parts of the county, which is occupied by the highest population of county residents. The roadway segments in this region also recorded highest debris volumes, which is a critical information for agencies that need to know highly impacted locations. Comparing the results to ground truth damage data, the accuracy recorded was 74%.
more »
« less
Post-Hurricane Vegetative Debris Assessment Using Spectral Indices Derived from Satellite Imagery
Transportation systems are vulnerable to hurricanes and yet their recovery plays a critical role in returning a community to its pre-hurricane state. Vegetative debris is among the most significant causes of disruptions on transportation infrastructure. Therefore, identifying the driving factors of hurricane-caused debris generation can help clear roadways faster and improve the recovery time of infrastructure systems. Previous studies on hurricane debris assessment are generally based on field data collection, which is expensive, time consuming, and dangerous. With the availability and convenience of remote sensing powered by the simple yet accurate estimations on the vigor of vegetation or density of manufactured features, spectral indices can change the way that emergency planners prepare for and perform vegetative debris removal operations. Thus, this study proposes a data fusion framework combining multispectral satellite imagery and various vector data to evaluate post-hurricane vegetative debris with an exploratory analysis in small geographical units. Actual debris removal data were obtained from the City of Tallahassee, Florida after Hurricane Michael (2018) and aggregated into U.S. Census Block Groups along with four groups of datasets representing vegetation, storm surge, land use, and socioeconomics. Findings suggest that vegetation and other land characteristics are more determinant factors on debris generation, and Modified Soil-Adjusted Vegetation Index (MSAVI2) outperforms other vegetation indices for hurricane debris assessment. The proposed framework can help better identify equipment stack locations and temporary debris collection centers while providing resilience enhancements with a focus on the transportation infrastructure.
more »
« less
- Award ID(s):
- 1940319
- PAR ID:
- 10319800
- Date Published:
- Journal Name:
- Transportation Research Record: Journal of the Transportation Research Board
- Volume:
- 2675
- Issue:
- 12
- ISSN:
- 0361-1981
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Hurricanes affect thousands of people annually, with devastating consequences such as loss of life, vegetation and infrastructure. Vegetation losses such as downed trees and infrastructure disruptions such as toppled power lines often lead to roadway closures. These disruptions can be life threatening for the victims. Emergency officials, therefore, have been trying to find ways to alleviate such problems by identifying those locations that pose high risk in the aftermath of hurricanes. This paper proposes an integrated methodology that utilizes both Google Earth Engine (GEE) and geographical information systems (GIS). First, GEE is used to access Sentinel-2 satellite images and calculate the Normalized Difference Vegetation Index (NDVI) to investigate the vegetation change as a result of Hurricane Michael in the City of Tallahassee. Second, through the use of ArcGIS, data on wind speed, debris, roadway density and demographics are incorporated into the methodology in addition to the NDVI indices to assess the overall impact of the hurricane. As a result, city-wide hurricane impact maps are created using weighted indices created based on all these data sets. Findings indicate that the northeast side of the city was the worst affected because of the hurricane. This is a region where more seniors live, and such disruptions can lead to dramatic consequences because of the fragility of these seniors. Officials can pinpoint the identified critical locations for future improvements such as roadway geometry modification and landscaping justification.more » « less
-
A first foundational assessment is provided for disaster debris reconnaissance that includes identifying tools and techniques for reconnaissance activities, identifying challenges in field reconnaissance, and identifying and developing preliminary guidelines and standards based on advancements from a workshop held in 2022. In this workshop, reconnaissance activities were analyzed in twofold: in relation to post-disaster debris and waste materials and in relation to waste management infrastructure. A four-phase timeline was included to capture the full lifecycle of management activities ranging from collection to temporary storage to final management route: pre-disaster or pre-reconnaissance, post-disaster response (days/weeks), short-term recovery (weeks/months), and long-term recovery (months/years). For successful reconnaissance, objectives of field activities and data collection needs; data types and metrics; and measurement and determination methods need to be identified. A reconnaissance framework, represented using a 3x2x2x4 matrix, is proposed to incorporate data attributes (tools, challenges, guides), reconnaissance attributes (debris, infrastructure; factors, actions), and time attributes (pre-event, response, short-term, long-term). This framework supports field reconnaissance missions and protocols that are longitudinally based and focused on post-disaster waste material and infrastructure metrics that advance sustainable materials management practices. To properly frame and develop effective reconnaissance activities, actions for all data attributes (tools, challenges, guides) are proposed to integrate sustainability and resilience considerations. While existing metrics, tools, methods, standards, and protocols can be adapted for sustainable post-disaster materials management reconnaissance, development of new approaches are needed for addressing unique aspects of disaster debris management.more » « less
-
This paper proposed and tested a multilayer framework for modeling network dynamics of inter-organizational coordination in resilience planning among interdependent infrastructure sectors. Each layer in the network represents one infrastructure sector such as flood control, transportation, and emergency response. Coordination probability was introduced to approximate the inconsistent coordination between organizations, based on which the intra-layer or inter-layer link removal was conducted and inter-organizational coordination efficiency within and across infrastructure sectors was hereby unveiled. To test the proposed framework, a multilayer collaboration network of 35 organizations from five infrastructure sectors in Harris County, Texas, was mapped based on a survey of Hurricane Harvey. The analysis results showed that before Hurricane Harvey, coordination among flood control, transportation, and infrastructure development sectors lacked essential integration to foster robust resilience plans. The proposed framework enables an assessment of coordination efficiency among organizations involving in resilience planning and provides an indicator for urban resilience measurement.more » « less
-
Anthropogenic debris in urban streams is a persistent environmental problem, yet previous studies have focused largely on how land use influences debris concentrations, while neglecting the potential role of fluvial geomorphology in mediating storage. To examine relationships between in-stream debris concentrations and different geomorphologic characteristics, catchment characteristics, and catchment and riparian land cover in US urban streams, we collected data on debris (>5 cm), large wood, cross-section and longitudinal profiles, and sediment sizes in 24 stream reaches in two metropolitan areas (Cleveland, Ohio; Charlotte, North Carolina). Debris concentrations ranged from 0.18 to 4.7 pieces/m bankfull width, with an average of 1.55 pieces/m. Plastic comprised 71.8 % of the collected debris, and in two reaches with repeated measurements, debris re-accumulated quickly following removal. In city-specific multiple linear regression models, debris concentrations across stream reaches was explained as well or better by geomorphologic variables than GIS variables, but when data from the two cities were combined, the opposite was true. Cross-section characteristics were among the strongest predictors of debris concentration in both cities. Our analysis suggests that roughness associated with stream banks plays an important role in debris storage, through trapping debris on riparian vegetation and by creating width constrictions that lead to low velocity zones and debris settling on the bed. Future work on interactions between bank and vegetative roughness and anthropogenic debris may reveal generalizable predictors of debris storage in urban streams.more » « less
An official website of the United States government

