skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Maximum likelihood reconstruction of ancestral networks by integer linear programming
Abstract Motivation The study of the evolutionary history of biological networks enables deep functional understanding of various bio-molecular processes. Network growth models, such as the Duplication–Mutation with Complementarity (DMC) model, provide a principled approach to characterizing the evolution of protein–protein interactions (PPIs) based on duplication and divergence. Current methods for model-based ancestral network reconstruction primarily use greedy heuristics and yield sub-optimal solutions. Results We present a new Integer Linear Programming (ILP) solution for maximum likelihood reconstruction of ancestral PPI networks using the DMC model. We prove the correctness of our solution that is designed to find the optimal solution. It can also use efficient heuristics from general-purpose ILP solvers to obtain multiple optimal and near-optimal solutions that may be useful in many applications. Experiments on synthetic data show that our ILP obtains solutions with higher likelihood than those from previous methods, and is robust to noise and model mismatch. We evaluate our algorithm on two real PPI networks, with proteins from the families of bZIP transcription factors and the Commander complex. On both the networks, solutions from our ILP have higher likelihood and are in better agreement with independent biological evidence from other studies. Availability and implementation A Python implementation is available at https://bitbucket.org/cdal/network-reconstruction. Supplementary information Supplementary data are available at Bioinformatics online.  more » « less
Award ID(s):
2019771
PAR ID:
10319833
Author(s) / Creator(s):
; ; ;
Editor(s):
Yann, Ponty
Date Published:
Journal Name:
Bioinformatics
Volume:
37
Issue:
8
ISSN:
1367-4803
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Martelli, Pier Luigi (Ed.)
    Abstract Motivation Transferring knowledge between species is challenging: different species contain distinct proteomes and cellular architectures, which cause their proteins to carry out different functions via different interaction networks. Many approaches to protein functional annotation use sequence similarity to transfer knowledge between species. These approaches cannot produce accurate predictions for proteins without homologues of known function, as many functions require cellular context for meaningful prediction. To supply this context, network-based methods use protein-protein interaction (PPI) networks as a source of information for inferring protein function and have demonstrated promising results in function prediction. However, most of these methods are tied to a network for a single species, and many species lack biological networks. Results In this work, we integrate sequence and network information across multiple species by computing IsoRank similarity scores to create a meta-network profile of the proteins of multiple species. We use this integrated multispecies meta-network as input to train a maxout neural network with Gene Ontology terms as target labels. Our multispecies approach takes advantage of more training examples, and consequently leads to significant improvements in function prediction performance compared to two network-based methods, a deep learning sequence-based method and the BLAST annotation method used in the Critial Assessment of Functional Annotation. We are able to demonstrate that our approach performs well even in cases where a species has no network information available: when an organism’s PPI network is left out we can use our multi-species method to make predictions for the left-out organism with good performance. Availability and implementation The code is freely available at https://github.com/nowittynamesleft/NetQuilt. The data, including sequences, PPI networks and GO annotations are available at https://string-db.org/. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  2. Abstract Motivation One of the core problems in the analysis of biological networks is the link prediction problem. In particular, existing interactions networks are noisy and incomplete snapshots of the true network, with many true links missing because those interactions have not yet been experimentally observed. Methods to predict missing links have been more extensively studied for social than for biological networks; it was recently argued that there is some special structure in protein–protein interaction (PPI) network data that might mean that alternate methods may outperform the best methods for social networks. Based on a generalization of the diffusion state distance, we design a new embedding-based link prediction method called global and local integrated diffusion embedding (GLIDE). GLIDE is designed to effectively capture global network structure, combined with alternative network type-specific customized measures that capture local network structure. We test GLIDE on a collection of three recently curated human biological networks derived from the 2016 DREAM disease module identification challenge as well as a classical version of the yeast PPI network in rigorous cross validation experiments. Results We indeed find that different local network structure is dominant in different types of biological networks. We find that the simple local network measures are dominant in the highly connected network core between hub genes, but that GLIDE’s global embedding measure adds value in the rest of the network. For example, we make GLIDE-based link predictions from genes known to be involved in Crohn’s disease, to genes that are not known to have an association, and make some new predictions, finding support in other network data and the literature. Availability and implementation GLIDE can be downloaded at https://bitbucket.org/kap_devkota/glide. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  3. Abstract SummaryComputational methods to predict protein–protein interaction (PPI) typically segregate into sequence-based ‘bottom-up’ methods that infer properties from the characteristics of the individual protein sequences, or global ‘top-down’ methods that infer properties from the pattern of already known PPIs in the species of interest. However, a way to incorporate top-down insights into sequence-based bottom-up PPI prediction methods has been elusive. We thus introduce Topsy-Turvy, a method that newly synthesizes both views in a sequence-based, multi-scale, deep-learning model for PPI prediction. While Topsy-Turvy makes predictions using only sequence data, during the training phase it takes a transfer-learning approach by incorporating patterns from both global and molecular-level views of protein interaction. In a cross-species context, we show it achieves state-of-the-art performance, offering the ability to perform genome-scale, interpretable PPI prediction for non-model organisms with no existing experimental PPI data. In species with available experimental PPI data, we further present a Topsy-Turvy hybrid (TT-Hybrid) model which integrates Topsy-Turvy with a purely network-based model for link prediction that provides information about species-specific network rewiring. TT-Hybrid makes accurate predictions for both well- and sparsely-characterized proteins, outperforming both its constituent components as well as other state-of-the-art PPI prediction methods. Furthermore, running Topsy-Turvy and TT-Hybrid screens is feasible for whole genomes, and thus these methods scale to settings where other methods (e.g. AlphaFold-Multimer) might be infeasible. The generalizability, accuracy and genome-level scalability of Topsy-Turvy and TT-Hybrid unlocks a more comprehensive map of protein interaction and organization in both model and non-model organisms. Availability and implementationhttps://topsyturvy.csail.mit.edu. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  4. Mulder, Nicola (Ed.)
    Abstract Motivation Leveraging cross-species information in protein function prediction can add significant power to network-based protein function prediction methods, because so much functional information is conserved across at least close scales of evolution. We introduce MUNDO, a new cross-species co-embedding method that combines a single-network embedding method with a co-embedding method to predict functional annotations in a target species, leveraging also functional annotations in a model species network. Results Across a wide range of parameter choices, MUNDO performs best at predicting annotations in the mouse network, when trained on mouse and human protein–protein interaction (PPI) networks, in the human network, when trained on human and mouse PPIs, and in Baker’s yeast, when trained on Fission and Baker’s yeast, as compared to competitor methods. MUNDO also outperforms all the cross-species methods when predicting in Fission yeast when trained on Fission and Baker’s yeast; however, in this single case, discarding the information from the other species and using annotations from the Fission yeast network alone usually performs best. Availability and implementation All code is available and can be accessed here: github.com/v0rtex20k/MUNDO. Supplementary information Supplementary data are available at Bioinformatics Advances online. Additional experimental results are on our github site. 
    more » « less
  5. Protein-protein interaction (PPI) network alignment has been motivating researches for the comprehension of the underlying crucial biological knowledge, such as conserved evolutionary pathways and functionally conserved proteins throughout different species. Existing PPI network alignment methods have tried to improve the coverage ratio by aligning all proteins from different species. However, there is a fundamental biological justification needed to be acknowledged, that not every protein in a species can, nor should, find homologous proteins in other species. In this paper, we propose a novel approach for multiple PPI network alignment that tries to align only those proteins with the most similarities. To provide more comprehensive supports in computing the similarity, we integrate structural features of the networks together with biological characteristics during the alignment. For the structural features, we apply on PPI networks a representation learning method, which creates a low-dimensional vector embedding with the surrounding topologies of each protein in the network. This approach quantifies the structural features, and provides a new way to determine the topological similarity of the networks by transferring which as calculations in vector similarities. We also propose a new metric for the topological evaluation which can better assess the topological quality of the alignment results across different networks. Both biological and topological evaluations demonstrate our approach is promising and preferable against previous multiple alignment methods. 
    more » « less