skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ASSETS: Fostering a community of engineering transfer students - best practices and beyond
This Research-to-Practice full paper presents findings from the ASSETS program – a comprehensive support ecosystem developed to improve retention and reduce time to graduation for engineering transfer students. ASSETS builds on the momentum established by two statewide initiatives in Tennessee that place transfer students at the forefront: (1) Tennessee Promise – a nationally recognized scholarship program launched in 2015 that provides last-dollar scholarships for low-income students to attend any state community college, and (2) Tennessee Reconnect – a lastdollar grant established in 2018 that allows adults who do not have an associate degree to attend a community or technical college tuition-free. With over 100,000 students enrolled in these programs to date, the number of students transferring to four-year institutions is expected to increase exponentially in the coming years. Historically, transfer students have been at higher risk of attrition due to known academic and social barriers. This is especially true for the Engineering disciplines. In an effort to address these obstacles, we have developed the Academic Intervention, Social Supports, and Scholarships for Engineering Transfer Students (ASSETS) program. In its third year of operation, with 35 enrolled ASSETS scholars, the program is well underway. Among our findings, we have recognized the critical importance of nurturing a community of transfer students that emphasizes equity, diversity, and inclusion. Establishing such a community involves more than just adopting established best practices. It requires a shift in mindset on behalf of the student regarding what is required to succeed, as well as on the part of faculty on what is expected of incoming students. This paper presents the findings and outcomes of the ASSETS program towards providing support to and enhancing the success of engineering transfer students.  more » « less
Award ID(s):
1741695
PAR ID:
10319890
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2021 IEEE Frontiers in Education Conference (FIE)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Community college transfer students face unique hurdles when they attend a 4-year university. Universities usually cost more than community colleges, 4-year colleges are often located in a different community from where the transfer student lives, and academic expectations are different from community colleges to universities. To help fix the academic achievement gap between students entering as freshman and transfer students, Stony Brook University started the Academic and Social STEM Excellence for Transfer Students (ASSETS) program. ASSETS recruits community college transfer students from low income, marginalized communities and provides them with a scholarship, a 2-week math bootcamp, career counseling, and gives them a natural cohort of students to have a community on campus. Our initial findings show that ASSETS helps the students afford college and relieve a major stress of attending university. After the bootcamp, the students had a group of friends and mentors to advise them on academic and career decisions, help them navigate SBU, and support them during challenges. 
    more » « less
  2. ASSETS - Academic Intervention, Social Supports, and Scholarships for Engineering Transfer Students is an NSF sponsored program at the University of Tennessee Chattanooga designed to help engineering transfer students overcome known academic and social barriers that impede retention or prolong graduation time following transfer from two-year community colleges into four year colleges. ASSETS is now in its fourth year of implementation. Several focus groups conducted among these scholars have consistently ranked the scholarship received as the number one contributing factor to their success. Other secondary but important factors have also emerged, suggesting that these students perceive the four-year institutions as lukewarm at best and hostile at worst to their ability to acclimate. These secondary factors indicate that these institutions need to become more welcoming by adopting strategies that are intentional in addressing the needs of these students, given current situational needs placing all the burden on them to adapt to their new environment. We conducted attitudinal surveys among students and faculty to gauge how pervasive these negative perceptions are among engineering transfer students. The survey analysis revealed that many faculty members do not differentiate between transfer students and traditional students and may therefore not be sensitive to their unique needs. However, faculty members associated with the ASSETS scholars, through serving as faculty mentors, were found to be aware of these differences and are already implementing measures that reflect a shift in mindset benefiting transfer students. This paper presents the findings of the surveys and the outcomes of the new mindset toward providing support to and enhancing the success of engineering transfer students. 
    more » « less
  3. This paper reports on the culmination of an NSF Scholarships in Science, Technology, Engineering and Mathematics (S-STEM) awarded to a two-year college located in a metro area with high rates of concentrated poverty and low levels of educational attainment. This two-year college is a minority-serving institution with curriculum to prepare students majoring in engineering to transfer and complete a baccalaureate degree at a four-year university. The Engineering Scholars Program (ESP) was established in fall 2019 to award students majoring in engineering annual scholarships of up to $6000, depending on financial need. In addition to supporting students through scholarships, the program engages scholars in professional development activities inclusive of academic seminars, extracurricular events, and undergraduate research opportunities in collaboration with the local four-year university. The program also established a mentorship structure with faculty mentors, student peer mentors, and academic advising. In addition to supporting scholars at the two-year college, the ESP provides support for a portion of cohorts that have transferred to the local four-year university and remained connected to the program. To date, the ESP has awarded a total of 131 semester long scholarships; 16 in year one (2019-2020), 28 in year two (2020-2021), 35 in year three (2021-2022), including six transfers, 38 in year four (2022-2023), including eight transfers, and 28 in year five (2023-2024), including 10 transfers. In year three, the ESP was awarded supplemental funding to support a larger portion of students and transfer cohorts; this helped reduce the financial burdens resulting from exacerbated financial needs due to the COVID-19 pandemic during years two and three of this project. This paper details the progress made towards the achievement of the program goals of creating a welcoming STEM climate at the two-year college, increasing the participation and persistence in engineering among economically disadvantaged students, and establishing transfer support to the local four-year university. Program evaluation findings have identified several opportunities for sustaining scholar transfer support outside of the financial support provided in the form of scholarships. These opportunities fell into two major themes: (1) peer-led transfer support inclusive of connecting transferred students and students preparing for transfer with emphasis on navigating different university structures, and (2) collaboration across engineering disciplines to develop and offer interdisciplinary undergraduate research and/or collaborative work on other projects. Furthermore, research findings from interviews with scholars provided additional context for taking action on program outcomes while also enhancing the understanding of how participation in a collaborative cohort experience can contribute to students’ membership within the STEM community and the construction of their own STEM identity. Although formal financial support sunsets during the final year of the ESP, program and research findings have identified programmatic elements that provide key support for students and can be sustained into the future. This paper reports on the program strategy for meeting the future needs of scholars at both the two-year college and the four-year transfer university. 
    more » « less
  4. College students experiencing financial challenges also face additional social and academic challenges to staying enrolled through graduation. Colleges that have the greatest success in persistence to graduation have combined scholarships with other academic, emotional, and social support. Here, we review previous studies of the relationship between S-STEM programs and college retention. We then discuss interim findings from the Iona College Development of Excellence in Science through Intervention, Resilience, and Enrichment (DESIRE) National Science Foundation (NSF) S-STEM scholarship program. DESIRE provides tuition scholarships and other support to academically talented chemistry and computer science majors with financial need. We gathered students’ perspectives regarding the DESIRE program and what helps them to persist in college, through interviews with DESIRE scholars and qualitative surveys of DESIRE scholars and a comparison group of non-DESIRE students. We discuss implications for S-STEM programs and other initiatives that seek to retain more STEM undergraduate students with financial need. 
    more » « less
  5. Research has shown that student achievement is influenced by their access to, or possession of, various forms of capital. These forms of capital include financial capital, academic capital (prior academic preparation and access to academic support services), cultural capital (the attitudes, knowledge, and behaviors related to education which students are exposed to by members of their family or community), and social capital (the resources students have access to as a result of being members of groups or networks). For community college students, many with high financial need and the first in their families to go to college (especially those from underrepresented minority groups), developing programs to increase access to these various forms of capital is critical to their success. This paper describes how a small federally designated Hispanic-serving community college has developed a scholarship program for financially needy community college students intending to transfer to a four-year institution to pursue a bachelor’s degree in a STEM field. Developed through a National Science Foundation Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM) grant, the program involves a collaboration among STEM faculty, college staff, administrators, student organizations, and partners in industry, four-year institutions, local high schools, and professional organizations. In addition to providing financial support through the scholarships, student access to academic capital is increased through an intensive math review program, tutoring, study groups, supplemental instruction, and research internship opportunities. Access to cultural and social capital is increased by providing scholars with faculty mentors; engaging students with STEM faculty, university researchers, and industry professionals through field trips, summer internships, professional organizations, and student clubs; supporting student and faculty participation at professional conferences, and providing opportunities for students and their families to interact with faculty and staff. The paper details the development of the program, and its impact over the last five years on enhancing the success of STEM students as determined from data on student participation in various program activities, student attitudinal and self-efficacy surveys, and academic performance including persistence, retention, transfer and graduation. 
    more » « less