skip to main content

This content will become publicly available on March 30, 2023

Title: Finger Force Estimation using Motor Unit Discharges Across Forearm Postures
Background: Myoelectric-based decoding has gained popularity in upper-limb neural-machine interfaces. Motor unit (MU) firings decomposed from surface electromyographic (EMG) signals can represent motor intent, but EMG properties at different arm configurations can change due to electrode shift and differing neuromuscular states. This study investigated whether isometric fingertip force estimation using MU firings is robust to forearm rotations from a neutral to either a fully pronated or supinated posture. Methods: We extracted MU information from high-density EMG of the extensor digitorum communis in two ways: (1) Decomposed EMG in all three postures (MU-AllPost); and (2) Decomposed EMG in neutral posture (MU-Neu), and extracted MUs (separation matrix) were applied to other postures. Populational MU firing frequency estimated forces scaled to subjects’ maximum voluntary contraction (MVC) using a regression analysis. The results were compared with the conventional EMG-amplitude method. Results: We found largely similar root-mean-square errors (RMSE) for the two MU-methods, indicating that MU decomposition was robust to postural differences. MU-methods demonstrated lower RMSE in the ring (EMG = 6.23, MU-AllPost = 5.72, MU-Neu = 5.64 %MVC) and pinky (EMG = 6.12, MU-AllPost = 4.95, MU-Neu = 5.36 %MVC) fingers, with mixed results in the middle finger (EMG = 5.47, MU-AllPost = 5.52, more » MU-Neu = 6.19% MVC). Conclusion: Our results suggest that MU firings can be extracted reliably with little influence from forearm posture, highlighting its potential as an alternative decoding scheme for robust and continuous control of assistive devices. « less
; ; ;
Award ID(s):
1847319 1954587 2106747
Publication Date:
Journal Name:
IEEE Transactions on Biomedical Engineering
Sponsoring Org:
National Science Foundation
More Like this
  1. A reliable and functional neural interface is necessary to control individual finger movements of assistive robotic hands. Non-invasive surface electromyogram (sEMG) can be used to predict fingertip forces and joint kinematics continuously. However, concurrent prediction of kinematic and dynamic variables in a continuous manner remains a challenge. The purpose of this study was to develop a neural decoding algorithm capable of concurrent prediction of fingertip forces and finger dynamic movements. High-density electromyogram (HD-EMG) signal was collected during finger flexion tasks using either the index or middle finger: isometric, dynamic, and combined tasks. Based on the data obtained from the two first tasks, motor unit (MU) firing activities associated with individual fingers and tasks were derived using a blind source separation method. MUs assigned to the same tasks and fingers were pooled together to form MU pools. Twenty MUs were then refined using EMG data of a combined trial. The refined MUs were applied to a testing dataset of the combined task, and were divided into five groups based on the similarity of firing patterns, and the populational discharge frequency was determined for each group. Using the summated firing frequencies obtained from five groups of MUs in a multivariate linear regressionmore »model, fingertip forces and joint angles were derived concurrently. The decoding performance was compared to the conventional EMG amplitude-based approach. In both joint angles and fingertip forces, MU-based approach outperformed the EMG amplitude approach with a smaller prediction error (Force: 5.36±0.47 vs 6.89±0.39 %MVC, Joint Angle: 5.0±0.27° vs 12.76±0.40°) and a higher correlation (Force: 0.87±0.05 vs 0.73±0.1, Joint Angle: 0.92±0.05 vs 0.45±0.05) between the predicted and recorded motor output. The outcomes provide a functional and accurate neural interface for continuous control of assistive robotic hands.« less
  2. Objective: Robust neural decoding of intended motor output is crucial to enable intuitive control of assistive devices, such as robotic hands, to perform daily tasks. Few existing neural decoders can predict kinetic and kinematic variables simultaneously. The current study developed a continuous neural decoding approach that can concurrently predict fingertip forces and joint angles of multiple fingers. Methods: We obtained motoneuron firing activities by decomposing high-density electromyogram (HD EMG) signals of the extrinsic finger muscles. The identified motoneurons were first grouped and then refined specific to each finger (index or middle) and task (finger force and dynamic movement) combination. The refined motoneuron groups (separate matrix) were then applied directly to new EMG data in real-time involving both finger force and dynamic movement tasks produced by both fingers. EMG-amplitude-based prediction was also performed as a comparison. Results: We found that the newly developed decoding approach outperformed the EMG-amplitude method for both finger force and joint angle estimations with a lower prediction error (Force: 3.47±0.43 vs 6.64±0.69% MVC, Joint Angle: 5.40±0.50° vs 12.8±0.65°) and a higher correlation (Force: 0.75±0.02 vs 0.66±0.05, Joint Angle: 0.94±0.01 vs 0.5±0.05) between the estimated and recorded motor output. The performance was also consistent for both fingers. Conclusion:more »The developed neural decoding algorithm allowed us to accurately and concurrently predict finger forces and joint angles of multiple fingers in real-time. Significance: Our approach can enable intuitive interactions with assistive robotic hands, and allow the performance of dexterous hand skills involving both force control tasks and dynamic movement control tasks.« less
  3. A reliable neural-machine interface is essential for humans to intuitively interact with advanced robotic hands in an unconstrained environment. Existing neural decoding approaches utilize either discrete hand gesture-based pattern recognition or continuous force decoding with one finger at a time. We developed a neural decoding technique that allowed continuous and concurrent prediction of forces of different fingers based on spinal motoneuron firing information. High-density skin-surface electromyogram (HD-EMG) signals of finger extensor muscle were recorded, while human participants produced isometric flexion forces in a dexterous manner (i.e. produced varying forces using either a single finger or multiple fingers concurrently). Motoneuron firing information was extracted from the EMG signals using a blind source separation technique, and each identified neuron was further classified to be associated with a given finger. The forces of individual fingers were then predicted concurrently by utilizing the corresponding motoneuron pool firing frequency of individual fingers. Compared with conventional approaches, our technique led to better prediction performances, i.e. a higher correlation ([Formula: see text] versus [Formula: see text]), a lower prediction error ([Formula: see text]% MVC versus [Formula: see text]% MVC), and a higher accuracy in finger state (rest/active) prediction ([Formula: see text]% versus [Formula: see text]%). Our decodingmore »method demonstrated the possibility of classifying motoneurons for different fingers, which significantly alleviated the cross-talk issue of EMG recordings from neighboring hand muscles, and allowed the decoding of finger forces individually and concurrently. The outcomes offered a robust neural-machine interface that could allow users to intuitively control robotic hands in a dexterous manner.« less
  4. Abstract Handedness has been associated with behavioral asymmetries between limbs that suggest specialized function of dominant and non-dominant hand. Whether patterns of muscle co-activation, representing muscle synergies, also differ between the limbs remains an open question. Previous investigations of proximal upper limb muscle synergies have reported little evidence of limb asymmetry; however, whether the same is true of the distal upper limb and hand remains unknown. This study compared forearm and hand muscle synergies between the dominant and non-dominant limb of left-handed and right-handed participants. Participants formed their hands into the postures of the American Sign Language (ASL) alphabet, while EMG was recorded from hand and forearm muscles. Muscle synergies were extracted for each limb individually by applying non-negative-matrix-factorization (NMF). Extracted synergies were compared between limbs for each individual, and between individuals to assess within and across participant differences. Results indicate no difference between the limbs for individuals, but differences in limb synergies at the population level. Left limb synergies were found to be more similar than right limb synergies across left- and right-handed individuals. Synergies of the left hand of left dominant individuals were found to have greater population level similarity than the other limbs tested. Results are interpretedmore »with respect to known differences in the neuroanatomy and neurophysiology of proximal and distal upper limb motor control. Implications for skill training in sports requiring dexterous control of the hand are discussed.« less
  5. Abstract

    Objective.High-density electromyography (HD-EMG) decomposition algorithms are used to identify individual motor unit (MU) spike trains, which collectively constitute the neural code of movements, to predict motor intent. This approach has advanced from offline to online decomposition, from isometric to dynamic contractions, leading to a wide range of neural-machine interface applications. However, current online methods need offline retraining when applied to the same muscle on a different day or to a different person, which limits their applications in a real-time neural-machine interface. We proposed a deep convolutional neural network (CNN) framework for neural drive estimation, which takes in frames of HD-EMG signals as input, extracts general spatiotemporal properties of MU action potentials, and outputs the number of spikes in each frame. The deep CNN can generalize its application without retraining to HD-EMG data recorded in separate sessions, muscles, or participants.Approach.We recorded HD-EMG signals from the vastus medialis and vastus lateralis muscles from five participants while they performed isometric contractions during two sessions separated by ∼20 months. We identified MU spike trains from HD-EMG signals using a convolutive blind source separation (BSS) method, and then used the cumulative spike train (CST) of these MUs and the HD-EMG signals to train andmore »validate the deep CNN.Main results.On average, the correlation coefficients between CST from the BSS and that from deep CNN were0.983±0.006for leave-one-out across-sessions-and-muscles validation and0.989±0.002for leave-one-out across-participants validation. When trained with more than four datasets, the performance of deep CNN saturated at0.984±0.001for cross validations across muscles, sessions, and participants.Significance.We can conclude that the deep CNN is generalizable across the aforementioned conditions without retraining. We could potentially generate a robust deep CNN to estimate neural drive to muscles for neural-machine interfaces.

    « less