A generic neural network model to estimate populational neural activity for robust neural decoding
More Like this
-
null (Ed.)This paper describes a systematic study of an approach to Farsi-Spanish low-resource Neural Machine Translation (NMT) that leverages monolingual data for joint learning of forward and backward translation models. As is standard for NMT systems, the training process begins using two pre-trained translation models that are iteratively updated by decreasing translation costs. In each iteration, either translation model is used to translate monolingual texts from one language to another, to generate synthetic datasets for the other translation model. Two new translation models are then learned from bilingual data along with the synthetic texts. The key distinguishing feature between our approach and standard NMT is an iterative learning process that improves the performance of both translation models, simultaneously producing a higher-quality synthetic training dataset upon each iteration. Our empirical results demonstrate that this approach outperforms baselines.more » « less
-
This paper aims to enhance the computational efficiency of safety verification of neural network control systems by developing a guaranteed neural network model reduction method. First, a concept of model reduction precision is proposed to describe the guaranteed distance between the outputs of a neural network and its reduced-size version. A reachability-based algorithm is proposed to accurately compute the model reduction precision. Then, by substituting a reduced-size neural network controller into the closed-loop system, an algorithm to compute the reachable set of the original system is developed, which is able to support much more computationally efficient safety verification processes. Finally, the developed methods are applied to a case study of the Adaptive Cruise Control system with a neural network controller, which is shown to significantly reduce the computational time of safety verification and thus validate the effectiveness of the method.more » « less
-
null (Ed.)We demonstrate digital predistortion (DPD) using a novel, neural-network (NN) method to combat the nonlinearities in power amplifiers (PAs), which limit the power efficiency of mobile devices, increase the error vector magnitude, and cause inadequate spectral containment. DPD is commonly done with polynomial-based methods that use an indirect-learning architecture (ILA) which can be computationally intensive, especially for mobile devices, and overly sensitive to noise. Our approach using NNs avoids the problems associated with ILAs by first training a NN to model the PA then training a predistorter by backpropagating through the PA NN model. The NN DPD effectively learns the unique PA distortions, which may not easily fit a polynomial-based model, and hence may offer a favorable tradeoff between computation overhead and DPD performance. We demonstrate the performance of our NN method using two different power amplifier systems and investigate the complexity tradeoffs.more » « less
-
The availability of massive data and computing allowing for effective data driven neural approaches is having a major impact on AI and IR research, but these models have a basic problem with efficiency. Current neural ranking models are implemented as multistage rankers: for efficiency reasons, the neural model only re-ranks the top ranked documents retrieved by a first-stage efficient ranker in response to a given query. Neural ranking models learn dense representations causing essentially every query term to match every document term, making it highly inefficient or intractable to rank the whole collection. The reliance on a first stage ranker creates a dual problem: First, the interaction and combination effects are not well understood. Second, the first stage ranker serves as a "gate-keeper" or filter effectively blocking the potential of neural models to uncover new relevant documents. In this work, we propose a standalone neural ranking model SNRM by introducing a sparsity property to learn a latent sparse representation for each query and document. This representation captures the semantic relationship between the query and documents, but is also {sparse} enough to enable constructing an inverted index for the whole collection. We parameterize the sparsity of the model to yield a retrieval model as efficient as conventional term based models. Our model gains in efficiency without loss of effectiveness: it not only outperforms the existing term matching baselines, but also performs similar to the recent re-ranking based neural models with dense representations. More generally, our results demonstrate the importance of sparsity in neural model learning and show that dense representations can be pruned effectively, giving new insights about essential semantic features and their distributions.more » « less