skip to main content


Title: Dynamics in a stellar convective layer and at its boundary: Comparison of five 3D hydrodynamics codes
Our ability to predict the structure and evolution of stars is in part limited by complex, 3D hydrodynamic processes such as convective boundary mixing. Hydrodynamic simulations help us understand the dynamics of stellar convection and convective boundaries. However, the codes used to compute such simulations are usually tested on extremely simple problems and the reliability and reproducibility of their predictions for turbulent flows is unclear. We define a test problem involving turbulent convection in a plane-parallel box, which leads to mass entrainment from, and internal-wave generation in, a stably stratified layer. We compare the outputs from the codes FLASH , MUSIC , PPMSTAR , PROMPI , and SLH , which have been widely employed to study hydrodynamic problems in stellar interiors. The convection is dominated by the largest scales that fit into the simulation box. All time-averaged profiles of velocity components, fluctuation amplitudes, and fluxes of enthalpy and kinetic energy are within ≲3 σ of the mean of all simulations on a given grid (128 3 and 256 3 grid cells), where σ describes the statistical variation due to the flow’s time dependence. They also agree well with a 512 3 reference run. The 128 3 and 256 3 simulations agree within 9% and 4%, respectively, on the total mass entrained into the convective layer. The entrainment rate appears to be set by the amount of energy that can be converted to work in our setup and details of the small-scale flows in the boundary layer seem to be largely irrelevant. Our results lend credence to hydrodynamic simulations of flows in stellar interiors. We provide in electronic form all outputs of our simulations as well as all information needed to reproduce or extend our study.  more » « less
Award ID(s):
2032010 1814181 1927130
NSF-PAR ID:
10320004
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
659
ISSN:
0004-6361
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Context. A realistic parametrization of convection and convective boundary mixing in conventional stellar evolution codes is still the subject of ongoing research. To improve the current situation, multidimensional hydrodynamic simulations are used to study convection in stellar interiors. Such simulations are numerically challenging, especially for flows at low Mach numbers which are typical for convection during early evolutionary stages. Aims. We explore the benefits of using a low-Mach hydrodynamic flux solver and demonstrate its usability for simulations in the astrophysical context. Simulations of convection for a realistic stellar profile are analyzed regarding the properties of convective boundary mixing. Methods. The time-implicit Seven-League Hydro (SLH) code was used to perform multidimensional simulations of convective helium shell burning based on a 25  M ⊙ star model. The results obtained with the low-Mach AUSM + -up solver were compared to results when using its non low-Mach variant AUSM B + -up. We applied well-balancing of the gravitational source term to maintain the initial hydrostatic background stratification. The computational grids have resolutions ranging from 180 × 90 2 to 810 × 540 2 cells and the nuclear energy release was boosted by factors of 3 × 10 3 , 1 × 10 4 , and 3 × 10 4 to study the dependence of the results on these parameters. Results. The boosted energy input results in convection at Mach numbers in the range of 10 −3 –10 −2 . Standard mixing-length theory predicts convective velocities of about 1.6 × 10 −4 if no boosting is applied. The simulations with AUSM + -up show a Kolmogorov-like inertial range in the kinetic energy spectrum that extends further toward smaller scales compared with its non low-Mach variant. The kinetic energy dissipation of the AUSM + -up solver already converges at a lower resolution compared to AUSM B + -up. The extracted entrainment rates at the boundaries of the convection zone are well represented by the bulk Richardson entrainment law and the corresponding fitting parameters are in agreement with published results for carbon shell burning. However, our study needs to be validated by simulations at higher resolution. Further, we find that a general increase in the entropy in the convection zone may significantly contribute to the measured entrainment of the top boundary. Conclusion. This study demonstrates the successful application of the AUSM + -up solver to a realistic astrophysical setup. Compressible simulations of convection in early phases at nominal stellar luminosity will benefit from its low-Mach capabilities. Similar to other studies, our extrapolated entrainment rate for the helium-burning shell would lead to an unrealistic growth of the convection zone if it is applied over the lifetime of the zone. Studies at nominal stellar luminosities and different phases of the same convection zone are needed to detect a possible evolution of the entrainment rate and the impact of radiation on convective boundary mixing. 
    more » « less
  2. ABSTRACT

    Our understanding of stellar structure and evolution coming from one-dimensional (1D) stellar models is limited by uncertainties related to multidimensional processes taking place in stellar interiors. 1D models, however, can now be tested and improved with the help of detailed three-dimensional (3D) hydrodynamics models, which can reproduce complex multidimensional processes over short time-scales, thanks to the recent advances in computing resources. Among these processes, turbulent entrainment leading to mixing across convective boundaries is one of the least understood and most impactful. Here, we present the results from a set of hydrodynamics simulations of the neon-burning shell in a massive star, and interpret them in the framework of the turbulent entrainment law from geophysics. Our simulations differ from previous studies in their unprecedented degree of realism in reproducing the stellar environment. Importantly, the strong entrainment found in the simulations highlights the major flaws of the current implementation of convective boundary mixing in 1D stellar models. This study therefore calls for major revisions of how convective boundaries are modelled in 1D, and in particular the implementation of entrainment in these models. This will have important implications for supernova theory, nucleosynthesis, neutron stars, and black holes physics.

     
    more » « less
  3. Large-eddy simulation (LES) is used to model turbulent winds in a nominally neutral atmospheric boundary layer at varying mesh resolutions. The boundary layer is driven by wind shear with zero surface heat flux and is capped by a stable inversion. Because of entrainment the boundary layer is in a weakly stably stratified regime. The simulations use meshes varying from 1282× 64 to 10242× 512 grid points in a fixed computational domain of size (2560, 2560, 896) m. The subgrid-scale (SGS) parameterizations used in the LES vary with the mesh spacing. Low-order statistics, spectra, and structure functions are compared on the different meshes and are used to assess grid convergence in the simulations. As expected, grid convergence is primarily achieved in the middle of the boundary layer where there is scale separation between the energy-containing and dissipative eddies. Near the surface second-order statistics do not converge on the meshes studied. The analysis also highlights differences between one-dimensional and two-dimensional velocity spectra; differences are attributed to sampling errors associated with aligning the horizontal coordinates with the vertically veering mean wind direction. Higher-order structure functions reveal non-Gaussian statistics on all scales, but are highly dependent on the mesh resolution. A generalized logarithmic law and a k−1spectral scaling regime are identified with mesh-dependent parameters in agreement with previously published results.

     
    more » « less
  4. Abstract

    We demonstrate that an extended eddy‐diffusivity mass‐flux (EDMF) scheme can be used as a unified parameterization of subgrid‐scale turbulence and convection across a range of dynamical regimes, from dry convective boundary layers, through shallow convection, to deep convection. Central to achieving this unified representation of subgrid‐scale motions are entrainment and detrainment closures. We model entrainment and detrainment rates as a combination of turbulent and dynamical processes. Turbulent entrainment/detrainment is represented as downgradient diffusion between plumes and their environment. Dynamical entrainment/detrainment is proportional to a ratio of a relative buoyancy of a plume and a vertical velocity scale, that is modulated by heuristic nondimensional functions which represent their relative magnitudes and the enhanced detrainment due to evaporation from clouds in drier environment. We first evaluate the closures offline against entrainment and detrainment rates diagnosed from large‐eddy simulations (LES) in which tracers are used to identify plumes, their turbulent environment, and mass and tracer exchanges between them. The LES are of canonical test cases of a dry convective boundary layer, shallow convection, and deep convection, thus spanning a broad range of regimes. We then compare the LES with the full EDMF scheme, including the new closures, in a single column model (SCM). The results show good agreement between the SCM and LES in quantities that are key for climate models, including thermodynamic profiles, cloud liquid water profiles, and profiles of higher moments of turbulent statistics. The SCM also captures well the diurnal cycle of convection and the onset of precipitation.

     
    more » « less
  5. The connection between the heat transfer and characteristic flow velocities of planetary core-style convection remains poorly understood. To address this, we present novel laboratory models of rotating Rayleigh–Bénard convection in which heat and momentum transfer are simultaneously measured. Using water (Prandtl number, Pr≃6) and cylindrical containers of diameter-to-height aspect ratios of Γ≃3,1.5,0.75, the non-dimensional rotation period (Ekman number, E) is varied between 10−7≲E≲3×10−5 and the non-dimensional convective forcing (Rayleigh number, Ra) ranges from 107≲Ra≲1012. Our heat transfer data agree with those of previous studies and are largely controlled by boundary layer dynamics. We utilize laser Doppler velocimetry (LDV) to obtain experimental point measurements of bulk axial velocities, resulting in estimates of the non-dimensional momentum transfer (Reynolds number, Re) with values between 4×102≲Re≲5×104. Behavioral transitions in the velocity data do not exist where transitions in heat transfer behaviors occur, indicating that bulk dynamics are not controlled by the boundary layers of the system. Instead, the LDV data agree well with the diffusion-free Coriolis–Inertia–Archimedian (CIA) scaling over the range of Ra explored. Furthermore, the CIA scaling approximately co-scales with the Viscous–Archimedian–Coriolis (VAC) scaling over the parameter space studied. We explain this observation by demonstrating that the VAC and CIA relations will co-scale when the local Reynolds number in the fluid bulk is of order unity. We conclude that in our experiments and similar laboratory and numerical investigations with E≳10−7, Ra≲1012, Pr≃7, heat transfer is controlled by boundary layer physics while quasi-geostrophically turbulent dynamics relevant to core flows robustly exist in the fluid bulk. 
    more » « less