Abstract We explore the three-dimensional properties of convective, luminous (L≈ 104.5–105L⊙), hydrogen-rich envelopes of red supergiants (RSGs) based on radiation hydrodynamic simulations in spherical geometry usingAthena++. These computations comprise ≈30% of the stellar volume, include gas and radiation pressure, and self-consistently track the gravitational potential for the outer ≈3M⊙of the simulatedM≈ 15M⊙stars. This work reveals a radius,Rcorr, around which the nature of the convection changes. Forr>Rcorr, though still optically thick, diffusion of photons dominates the energy transport. Such a regime is well studied in less luminous stars, but in RSGs, the near- (or above-)Eddington luminosity (due to opacity enhancements at ionization transitions) leads to the unusual outcome of denser regions moving outward rather than inward. This region of the star also has a large amount of turbulent pressure, yielding a density structure much more extended than 1D stellar evolution predicts. This “halo” of material will impact predictions for both shock breakout and early lightcurves of Type IIP supernovae. Inside ofRcorr, we find a nearly flat entropy profile as expected in the efficient regime of mixing-length theory (MLT). Radiation pressure provides ≈1/3 of the support against gravity in this region. Our comparisons to MLT suggest a mixing length ofα= 3–4, consistent with the sizes of convective plumes seen in the simulations. The temporal variability of these 3D models is mostly on the timescale of the convective plume lifetimes (≈300 days), with amplitudes consistent with those observed photometrically.
more »
« less
3D Hydrodynamic Simulations of Massive Main-sequence Stars. III. The Effect of Radiation Pressure and Diffusion Leading to a 1D Equilibrium Model
Abstract We present 3D hydrodynamical simulations of core convection with a stably stratified envelope of a 25M⊙star in the early phase of the main sequence. We use the explicit gas-dynamics codePPMstar, which tracks two fluids and includes radiation pressure and radiative diffusion. Multiple series of simulations with different luminosities and radiative thermal conductivities are presented. The entrainment rate at the convective boundary, internal gravity waves in and above the boundary region, and the approach to dynamical equilibrium shortly after a few convective turnovers are investigated. We perform very long simulations on 8963grids accelerated by luminosity boost factors of 1000, 3162 and 10,000. In these simulations, the growing penetrative convection reduces the initially unrealistically large entrainment. This reduction is enabled by a spatial separation that develops between the entropy gradient and the composition gradient. The convective boundary moves outward much more slowly at the end of these simulations. Finally, we present a 1D method to predict the extent and character of penetrative convection beyond the Schwarzschild boundary. The 1D model is based on a spherically averaged reduced entropy equation that takes the turbulent dissipation as input from the 3D hydrodynamic simulation and takes buoyancy and all other energy sources and sinks into account. This 1D method is intended to be ultimately deployed in 1D stellar evolution calculations and is based on the properties of penetrative convection in our simulations carried forward through the local thermal timescale.
more »
« less
- PAR ID:
- 10554218
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 975
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 271
- Size(s):
- Article No. 271
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Stellar evolution models calculate convective boundaries using either the Schwarzschild or Ledoux criterion, but confusion remains regarding which criterion to use. Here we present a 3D hydrodynamical simulation of a convection zone and adjacent radiative zone, including both thermal and compositional buoyancy forces. As expected, regions that are unstable according to the Ledoux criterion are convective. Initially, the radiative zone adjacent to the convection zone is Schwarzschild unstable but Ledoux stable due to a composition gradient. Over many convective overturn timescales, the convection zone grows via entrainment. The convection zone saturates at the size originally predicted by the Schwarzschild criterion, although in this final state the Schwarzschild and Ledoux criteria agree. Therefore, the Schwarzschild criterion should be used to determine the size of stellar convection zones, except possibly during short-lived evolutionary stages in which entrainment persists.more » « less
-
Abstract UsingAthena++, we perform 3D radiation-hydrodynamic calculations of the radiative breakout of the shock wave in the outer envelope of a red supergiant (RSG) that has suffered core collapse and will become a Type IIP supernova. The intrinsically 3D structure of the fully convective RSG envelope yields key differences in the brightness and duration of the shock breakout (SBO) from that predicted in a 1D stellar model. First, the lower-density “halo” of material outside of the traditional photosphere in 3D models leads to a shock breakout at lower densities than 1D models. This would prolong the duration of the shock breakout flash at any given location on the surface to ≈1–2 hr. However, we find that the even larger impact is the intrinsically 3D effect associated with large-scale fluctuations in density that cause the shock to break out at different radii at different times. This substantially prolongs the SBO duration to ≈3–6 hr and implies a diversity of radiative temperatures, as different patches across the stellar surface are at different stages of their radiative breakout and cooling at any given time. These predicted durations are in better agreement with existing observations of SBO. The longer durations lower the predicted luminosities by a factor of 3–10 (Lbol∼ 1044erg s−1), and we derive the new scalings of brightness and duration with explosion energies and stellar properties. These intrinsically 3D properties eliminate the possibility of using observed rise times to measure the stellar radius via light-travel time effects.more » « less
-
ABSTRACT Our knowledge of stellar evolution is driven by one-dimensional (1D) simulations. 1D models, however, are severely limited by uncertainties on the exact behaviour of many multidimensional phenomena occurring inside stars, affecting their structure and evolution. Recent advances in computing resources have allowed small sections of a star to be reproduced with multi-D hydrodynamic models, with an unprecedented degree of detail and realism. In this work, we present a set of 3D simulations of a convective neon-burning shell in a 20 M⊙ star run for the first time continuously from its early development through to complete fuel exhaustion, using unaltered input conditions from a 321D-guided 1D stellar model. These simulations help answer some open questions in stellar physics. In particular, they show that convective regions do not grow indefinitely due to entrainment of fresh material, but fuel consumption prevails over entrainment, so when fuel is exhausted convection also starts decaying. Our results show convergence between the multi-D simulations and the new 321D-guided 1D model, concerning the amount of convective boundary mixing to include in stellar models. The size of the convective zones in a star strongly affects its structure and evolution; thus, revising their modelling in 1D will have important implications for the life and fate of stars. This will thus affect theoretical predictions related to nucleosynthesis, supernova explosions, and compact remnants.more » « less
-
ABSTRACT Our understanding of stellar structure and evolution coming from one-dimensional (1D) stellar models is limited by uncertainties related to multidimensional processes taking place in stellar interiors. 1D models, however, can now be tested and improved with the help of detailed three-dimensional (3D) hydrodynamics models, which can reproduce complex multidimensional processes over short time-scales, thanks to the recent advances in computing resources. Among these processes, turbulent entrainment leading to mixing across convective boundaries is one of the least understood and most impactful. Here, we present the results from a set of hydrodynamics simulations of the neon-burning shell in a massive star, and interpret them in the framework of the turbulent entrainment law from geophysics. Our simulations differ from previous studies in their unprecedented degree of realism in reproducing the stellar environment. Importantly, the strong entrainment found in the simulations highlights the major flaws of the current implementation of convective boundary mixing in 1D stellar models. This study therefore calls for major revisions of how convective boundaries are modelled in 1D, and in particular the implementation of entrainment in these models. This will have important implications for supernova theory, nucleosynthesis, neutron stars, and black holes physics.more » « less