skip to main content


Title: Roughness Index and Roughness Distance for Benchmarking Medical Segmentation
Medical image segmentation is one of the most challenging tasks in medical image analysis and has been widely developed for many clinical applications. Most of the existing metrics have been first designed for natural images and then extended to medical images. While object surface plays an important role in medical segmentation and quantitative analysis i.e. analyze brain tumor surface, measure gray matter volume, most of the existing metrics are limited when it comes to analyzing the object surface, especially to tell about surface smoothness or roughness of a given volumetric object or to analyze the topological errors. In this paper, we first analysis both pros and cons of all existing medical image segmentation metrics, specially on volumetric data. We then propose an appropriate roughness index and roughness distance for medical image segmentation analysis and evaluation. Our proposed method addresses two kinds of segmentation errors, i.e. (i) topological errors on boundary/surface and (ii) irregularities on the boundary/surface. The contribution of this work is four-fold: (i) detect irregular spikes/holes on a surface, (ii) propose roughness index to measure surface roughness of a given object, (iii) propose a roughness distance to measure the distance of two boundaries/surfaces by utilizing the proposed roughness index and (iv) suggest an algorithm which helps to remove the irregular spikes/holes to smooth the surface. Our proposed roughness index and roughness distance are built upon the solid surface roughness parameter which has been successfully developed in the civil engineering.  more » « less
Award ID(s):
1946391
NSF-PAR ID:
10320013
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Medical image segmentation is one of the most challenging tasks in medical image analysis and widely developed for many clinical applications. While deep learning-based approaches have achieved impressive performance in semantic segmentation, they are limited to pixel-wise settings with imbalanced-class data problems and weak boundary object segmentation in medical images. In this paper, we tackle those limitations by developing a new two-branch deep network architecture which takes both higher level features and lower level features into account. The first branch extracts higher level feature as region information by a common encoder-decoder network structure such as Unet and FCN, whereas the second branch focuses on lower level features as support information around the boundary and processes in parallel to the first branch. Our key contribution is the second branch named Narrow Band Active Contour (NB-AC) attention model which treats the object contour as a hyperplane and all data inside a narrow band as support information that influences the position and orientation of the hyperplane. Our proposed NB-AC attention model incorporates the contour length with the region energy involving a fixed-width band around the curve or surface. The proposed network loss contains two fitting terms: (i) a high level feature (i.e., region) fitting term from the first branch; (ii) a lower level feature (i.e., contour) fitting term from the second branch including the (ii1) length of the object contour and (ii2) regional energy functional formed by the homogeneity criterion of both the inner band and outer band neighboring the evolving curve or surface. The proposed NB-AC loss can be incorporated into both 2D and 3D deep network architectures. The proposed network has been evaluated on different challenging medical image datasets, including DRIVE, iSeg17, MRBrainS18 and Brats18. The experimental results have shown that the proposed NB-AC loss outperforms other mainstream loss functions: Cross Entropy, Dice, Focal on two common segmentation frameworks Unet and FCN. Our 3D network which is built upon the proposed NB-AC loss and 3DUnet framework achieved state-of-the-art results on multiple volumetric datasets. 
    more » « less
  2. Medical image analysis using deep learning has recently been prevalent, showing great performance for various downstream tasks including medical image segmentation and its sibling, volumetric image segmentation. Particularly, a typical volumetric segmentation network strongly relies on a voxel grid representation which treats volumetric data as a stack of individual voxel `slices', which allows learning to segment a voxel grid to be as straightforward as extending existing image-based segmentation networks to the 3D domain. However, using a voxel grid representation requires a large memory footprint, expensive test-time and limiting the scalability of the solutions. In this paper, we propose Point-Unet, a novel method that incorporates the eciency of deep learning with 3D point clouds into volumetric segmentation. Our key idea is to rst predict the regions of interest in the volume by learning an attentional probability map, which is then used for sampling the volume into a sparse point cloud that is subsequently segmented using a point-based neural network. We have conducted the experiments on the medical volumetric segmentation task with both a small-scale dataset Pancreas and large-scale datasets BraTS18, BraTS19, and BraTS20 challenges. A comprehensive benchmark on di erent metrics has shown that our context-aware Point-Unet robustly outperforms the SOTA voxel-based networks at both accuracies, memory usage during training, and time consumption during testing. 
    more » « less
  3. Besides per-pixel accuracy, topological correctness is also crucial for the segmentation of images with fine-scale structures, e.g., satellite images and biomedical images. In this paper, by leveraging the theory of digital topology, we identify pixels in an image that are critical for topology. By focusing on these critical pixels, we propose a new homotopy warping loss to train deep image segmentation networks for better topological accuracy. To efficiently identify these topologically critical pixels, we propose a new algorithm exploiting the distance transform. The proposed algorithm, as well as the loss function, naturally generalize to different topological structures in both 2D and 3D settings. The proposed loss function helps deep nets achieve better performance in terms of topology-aware metrics, outperforming state-of-the-art structure/topology-aware segmentation methods. 
    more » « less
  4. In recent years, deep neural networks have achieved state-of-the-art performance in a variety of recognition and segmentation tasks in medical imaging including brain tumor segmentation. We investigate that segmenting a brain tumor is facing to the imbalanced data problem where the number of pixels belonging to the background class (non tumor pixel) is much larger than the number of pixels belonging to the foreground class (tumor pixel). To address this problem, we propose a multitask network which is formed as a cascaded structure. Our model consists of two targets, i.e., (i) effectively differentiate the brain tumor regions and (ii) estimate the brain tumor mask. The first objective is performed by our proposed contextual brain tumor detection network, which plays a role of an attention gate and focuses on the region around brain tumor only while ignoring the far neighbor background which is less correlated to the tumor. Different from other existing object detection networks which process every pixel, our contextual brain tumor detection network only processes contextual regions around ground-truth instances and this strategy aims at producing meaningful regions proposals. The second objective is built upon a 3D atrous residual network and under an encode-decode network in order to effectively segment both large and small objects (brain tumor). Our 3D atrous residual network is designed with a skip connection to enables the gradient from the deep layers to be directly propagated to shallow layers, thus, features of different depths are preserved and used for refining each other. In order to incorporate larger contextual information from volume MRI data, our network utilizes the 3D atrous convolution with various kernel sizes, which enlarges the receptive field of filters. Our proposed network has been evaluated on various datasets including BRATS2015, BRATS2017 and BRATS2018 datasets with both validation set and testing set. Our performance has been benchmarked by both regionbased metrics and surface-based metrics. We also have conducted comparisons against state-of-the-art approaches 
    more » « less
  5. Shape priors have been widely utilized in medical image segmentation to improve segmentation accuracy and robustness. A major way to encode such a prior shape model is to use a mesh representation, which is prone to causing self-intersection or mesh folding. Those problems require complex and expensive algorithms to mitigate. In this paper, we propose a novel shape prior directly embedded in the voxel grid space, based on gradient vector flows of a pre-segmentation. The flexible and powerful prior shape representation is ready to be extended to simultaneously segmenting multiple interacting objects with minimum separation distance constraint. The segmentation problem of multiple interacting objects with shape priors is formulated as a Markov Random Field problem, which seeks to optimize the label assignment (objects or background) for each voxel while keeping the label consistency between the neighboring voxels. The optimization problem can be efficiently solved with a single minimum s-t cut in an appropriately constructed graph. The proposed algorithm has been validated on two multi-object segmentation applications: the brain tissue segmentation in MRI images and the bladder/prostate segmentation in CT images. Both sets of experiments showed superior or competitive performance of the proposed method to the compared state-of-the-art methods. 
    more » « less