Structural accuracy of segmentation is important for fine-scale structures in biomedical images. We propose a novel Topological-Attention ConvLSTM Network (TACLNet) for 3D anisotropic image segmentation with high structural accuracy. We adopt ConvLSTM to leverage contextual information from adjacent slices while achieving high efficiency. We propose a Spatial Topological-Attention (STA) module to effectively transfer topologically critical information across slices. Furthermore, we propose an Iterative Topological-Attention (ITA) module that provides a more stable topologically critical map for segmentation. Quantitative and qualitative results show that our proposed method outperforms various baselines in terms of topology-aware evaluation metrics. 
                        more » 
                        « less   
                    
                            
                            Structure-Aware Image Segmentation with Homotopy Warping
                        
                    
    
            Besides per-pixel accuracy, topological correctness is also crucial for the segmentation of images with fine-scale structures, e.g., satellite images and biomedical images. In this paper, by leveraging the theory of digital topology, we identify pixels in an image that are critical for topology. By focusing on these critical pixels, we propose a new homotopy warping loss to train deep image segmentation networks for better topological accuracy. To efficiently identify these topologically critical pixels, we propose a new algorithm exploiting the distance transform. The proposed algorithm, as well as the loss function, naturally generalize to different topological structures in both 2D and 3D settings. The proposed loss function helps deep nets achieve better performance in terms of topology-aware metrics, outperforming state-of-the-art structure/topology-aware segmentation methods. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1909038
- PAR ID:
- 10417484
- Date Published:
- Journal Name:
- The Thirty-sixth Conference on Neural Information Processing Systems
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Segmentation algorithms are prone to make topological errors on fine-scale structures, e.g., broken connections. We propose a novel method that learns to segment with correct topology. In particular, we design a continuous-valued loss function that enforces a segmentation to have the same topology as the ground truth, i.e., having the same Betti number. The proposed topology-preserving loss function is differentiable and we incorporate it into end-to-end training of a deep neural network. Our method achieves much better performance on the Betti number error, which directly accounts for the topological correctness. It also performs superiorly on other topology-relevant metrics, e.g., the Adjusted Rand Index and the Variation of Information. We illustrate the effectiveness of the proposed method on a broad spectrum of natural and biomedical datasets.more » « less
- 
            Implicit neural representations (INR) have been recently proposed as deep learning (DL) based solutions for image compression. An image can be compressed by training an INR model with fewer weights than the number of image pixels to map the coordinates of the image to corresponding pixel values. While traditional training approaches for INRs are based on enforcing pixel-wise image consistency, we propose to further improve image quality by using a new structural regularizer. We present structural regularization for INR compression (SINCO) as a novel INR method for image compression. SINCO imposes structural consistency of the compressed images to the groundtruth by using a segmentation network to penalize the discrepancy of segmentation masks predicted from compressed images. We validate SINCO on brain MRI images by showing that it can achieve better performance than some recent INR methods.more » « less
- 
            null (Ed.)Deep learning models have achieved state-of-the-art performance in semantic image segmentation, but the results provided by fully automatic algorithms are not always guaranteed satisfactory to users. Interactive segmentation offers a solution by accepting user annotations on selective areas of the images to refine the segmentation results. However, most existing models only focus on correcting the current image’s misclassified pixels, with no knowledge carried over to other images. In this work, we formulate interactive image segmentation as a continual learning problem and propose a framework to effectively learn from user annotations, aiming to improve the segmentation on both the current image and unseen images in future tasks while avoiding deteriorated performance on previously-seen images. It employs a probabilistic mask to control the neural network’s kernel activation and extract the most suitable features for segmenting images in each task. We also design a task-aware architecture to automatically infer the optimal kernel activation for initial segmentation and subsequent refinement. Interactions with users are guided through multi-source uncertainty estimation so that users can focus on the most important areas to minimize the overall manual annotation effort. Extensive experiments are performed on both medical and natural image datasets to illustrate the proposed framework’s effectiveness on basic segmentation performance, forward knowledge transfer, and backward knowledge transfer.more » « less
- 
            Electron microscopy images of carbon nanotube (CNT) forests are difficult to segment due to the long and thin nature of the CNTs; density of the CNT forests resulting in CNTs touching, crossing, and occluding each other; and low signal-to-noise ratio electron microscopy imagery. In addition, due to image complexity, it is not feasible to prepare training segmentation masks. In this paper, we propose CNTSegNet, a dual loss, orientation-guided, self-supervised, deep learning network for CNT forest segmentation in scanning electron microscopy (SEM) images. Our training labels consist of weak segmentation labels produced by intensity thresholding of the raw SEM images and self labels produced by estimating orientation distribution of CNTs in these raw images. The proposed network extends a U-net-like encoder-decoder architecture with a novel two-component loss function. The first component is dice loss computed between the predicted segmentation maps and the weak segmentation labels. The second component is mean squared error (MSE) loss measuring the difference between the orientation histogram of the predicted segmentation map and the original raw image. Weighted sum of these two loss functions is used to train the proposed CNTSegNet network. The dice loss forces the network to perform background-foreground segmentation using local intensity features. The MSE loss guides the network with global orientation features and leads to refined segmentation results. The proposed system needs only a few-shot dataset for training. Thanks to it’s self-supervised nature, it can easily be adapted to new datasets.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    