- Award ID(s):
- 1948709
- PAR ID:
- 10320047
- Date Published:
- Journal Name:
- 2021 ASEE Virtual Annual Conference.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Rural youth need more opportunities to participate in enriching STEM experiences and career pathways compared to their peers in urban areas. This study explores local mentors' role in shaping these pathways and addressing challenges related to STEM mentoring for rural youth. Through a three-year STEM program incorporating programmable sensor and 3D printing technology curricula, we establish a typology of mentors and examine their interactions with middle school youth. Analyzing recorded youth-mentor interactions, we identified several practical mentoring approaches. Our findings highlight the crucial contribution of mentors in the rural STEM learning ecosystem, as they foster possibilities and open avenues for disadvantaged youth to envision bright futures and dream of exciting opportunities in STEM.more » « less
-
African-American and Hispanic males are significantly underrepresented in STEM. While youth start narrowing their career choices in middle school, National Maker programs rarely specifically target minority males. Four Historically Black Colleges/Universities (HBCUs), in partnership with The Verizon Foundation, have established Maker communities in underserved urban and rural communities. The Minority Male Maker Program allows middle school students and their teachers to develop science, technology, engineering, and mathematics (STEM) skills while expressing their creativity. The long term goals of this project are to increase participant interest in STEM careers and college attendance. In the short term, we anticipate increased technology proficiency, STEM engagement and academic achievement. Additional outcomes include increased teacher and mentor understanding of STEM instruction delivery and mentorship. Panelists will discuss disparities facing men of color and a new National program designed to provide early exposure to STEM. Recommendations for developing programs targeting minority male students will be discussed.more » « less
-
Despite limited success in broadening participation in engineering with rural and Appalachian youth, there remain challenges such as misunderstandings around engineering careers, misalignments with youth’s sociocultural background, and other environmental barriers. In addition, middle school science teachers may be unfamiliar with engineering or how to integrate engineering concepts into science lessons. Furthermore, teachers interested in incorporating engineering into their curriculum may not have the time or resources to do so. The result may be single interventions such as a professional development workshop for teachers or a career day for students. However, those are unlikely to cause major change or sustained interest development. To address these challenges, we have undertaken our NSF ITEST project titled, Virginia Tech Partnering with Educators and Engineers in Rural Schools (VT PEERS). Through this project, we sought to improve youth awareness of and preparation for engineering related careers and educational pathways. Utilizing regular engagement in engineering-aligned classroom activities and culturally relevant programming, we sought to spark an interest with some students. In addition, our project involves a partnership with teachers, school districts, and local industry to provide a holistic and, hopefully, sustainable influence. By engaging over time we aspired to promote sustainability beyond this NSF project via increased teacher confidence with engineering related activities, continued integration within their science curriculum, and continued relationships with local industry. From the 2017-2020 school years the project has been in seven schools across three rural counties. Each year a grade level was added; that is, the teachers and students from the first year remained for all three years. Year 1 included eight 6th grade science teachers, year 2 added eight 7th grade science teachers, and year 3 added three 8th grade science teachers and a career and technology teacher. The number of students increased from over 500 students in year 1 to over 2500 in year 3. Our three industry partners have remained active throughout the project. During the third and final year in the classrooms, we focused on the sustainable aspects of the project. In particular, on how the intervention support has evolved each year based on data, support requests from the school divisions, and in scaffolding “ownership” of the engineering activities. Qualitative data were used to support our understanding of teachers’ confidence to incorporate engineering into their lessons plans and how their confidence changed over time. Noteworthy, our student data analysis resulted in an instrument change for the third year; however due to COVID, pre and post data was limited to schools who taught on a semester basis. Throughout the project we have utilized the ITEST STEM Workforce Education Helix model to support a pragmatic approach of our research informing our practice to enable an “iterative relationship between STEM content development and STEM career development activities… within the cultural context of schools, with teachers supported by professional development, and through programs supported by effective partnerships.” For example, over the course of the project, scaffolding from the University leading interventions to teachers leading interventions occurred.more » « less
-
Abstract The use of 3D printing in science, technology, engineering and mathematics (STEM) learning is a promising way for integrated STEM education. This study examined the influence of 3D printing infused STEM integration on students' interest in STEM careers, which is essential for students to participate in STEM disciplines and future STEM careers. The participants included 26 teachers across six states in the United States and their 1455 students in primary and secondary classrooms. Teachers' lesson plans were analysed to examine the level of 3D printing and STEM integration. Students' interest in STEM careers was measured using a previously validated career interest scale. Cluster analysis and multiple regression analysis indicated that girls were more interested in empathetic STEM careers, whereas boys were more interested in analytic STEM careers. While 3D printing integration level was not a significant predictor, teachers' STEM integration level positively predicted students' interest in both analytic and empathetic STEM careers.
Practitioner notes What is already known about this topic
Student career interest in primary and secondary school predicts college degree and career choice.
3D printing has the potential to improve students' interest in STEM careers.
STEM career interest is associated with student gender.
What this paper adds
This study examined the role of 3D printing and STEM integration level and student gender in students' STEM career interest.
Teachers' 3D printing integration level was not a significant predictor, but STEM integration level positively predicted students' interest in STEM careers.
This study confirmed that boys were more interested in Analytic STEM careers, whereas girls were more interested in Empathetic STEM careers.
Implications for practice and/or policy
Student STEM career interest improves when teachers integrate STEM in their instruction.
STEM instruction can be made relevant by focusing on empathetic aspects of STEM for girls, but caution should be exercised to minimise stereotyping.
-
High-achieving students in economically disadvantaged, rural schools lack access to advanced coursework necessary to pursue science, technology, engineering, and mathematics (STEM) educational and employment goals at the highest levels, contributing to the excellence gap. Out-of-school STEM programming offers one pathway to students’ talent development. Using a concurrent triangulation mixed-methods research design, this study was conducted to evaluate the experiences of 78 high-achieving students and their 32 teachers, participating in an extracurricular, school-based, STEM talent development program for rural students from economically disadvantaged communities. Findings suggest that students and teachers expressed satisfaction with program participation and that they thought more creatively and critically about their work. Results also showed that students’ perceptions of the mathematics and science activities were significantly different, which informs ways to improve programming for future high-achieving, rural students. These findings expand the literature supporting the use of informal STEM education environments for underserved gifted populations to increase engagement in and access to challenging curricula.more » « less