skip to main content

Title: Integrating Professional Mentorship with a 3D-Printing Curriculum to Help Rural Youth Forge STEM Career Connections.
Economically disadvantaged youth residing in mountain tourist communities represent an important and understudied rural population. These communities typically include a large percentage of children that are English language learners. Our NSF STEM Career Connections project, A Model for Preparing Economically-Disadvantaged Rural Youth for the Future STEM Workplace, investigates strategies that help middle school youth in these communities to envision a broader range of workforce opportunities, especially in STEM and computing careers. This poster highlights the initial findings of an innovative model that involves working with local schools and community partners to support the integration of local career contexts, engineering phenomena, 3D printing technologies, career connections, and mentorship into formal educational experiences to motivate and prepare rural youth for future STEM careers. We focus on select classrooms at two middle schools and describe the implementation of a novel 3D printing curriculum during the 2020-2021 school-year. Two STEM teachers implemented the five-week curriculum with approximately 300 students per quarter. To create a rich inquiry-driven learning environment, the curriculum uses an instructional design approach called storylining. This approach is intended to promote coherence, relevance, and meaning from the students’ perspectives by using students’ questions to drive investigations and lessons. Students worked towards answering the more » question: “How can we support animals with physical disabilities so they can perform daily activities independently?” Students engaged in the engineering design process by defining, developing, and optimizing solutions to develop and print prosthetic limbs for animals with disabilities using 3D modeling, a unique augmented reality application, and 3D printing. In order to embed connections to STEM careers and career pathways, some students received mentorship and guidance from local STEM professionals who work in related fields. This poster will describe the curriculum and its implementation across two quarters at two middle schools in the US rural mountain west, as well as the impact on students’ interest in STEM and computing careers. During the first quarter students engaged in the 3D printing curriculum, but did not have access to the STEM career and career pathway connections mentorship piece. During the second quarter, the project established a partnership with a local STEM business -- a medical research institute that utilizes 3D printing and scanning for creating human surgical devices and procedures -- to provide mentorship to the students. Volunteers from this institute served as ongoing mentors for the students in each classroom during the second quarter. The STEM mentors guided students through the process of designing, testing, and optimizing their 3D models and 3D printed prosthetics, providing insights into how students’ learning directly applies to the medical industry. Different forms of student data such as cognitive interviews and pre/post STEM interest and spatial thinking surveys were collected and analyzed to understand the benefits of the career connections mentorship component. Preliminary findings suggest the relationship between local STEM businesses and students is important to motivate youth from rural areas to see themselves being successful in STEM careers and helping them to realize the benefits of engaging with emerging engineering technologies. « less
Award ID(s):
Publication Date:
Journal Name:
2021 ASEE Virtual Annual Conference.
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite limited success in broadening participation in engineering with rural and Appalachian youth, there remain challenges such as misunderstandings around engineering careers, misalignments with youth’s sociocultural background, and other environmental barriers. In addition, middle school science teachers may be unfamiliar with engineering or how to integrate engineering concepts into science lessons. Furthermore, teachers interested in incorporating engineering into their curriculum may not have the time or resources to do so. The result may be single interventions such as a professional development workshop for teachers or a career day for students. However, those are unlikely to cause major change or sustained interest development. To address these challenges, we have undertaken our NSF ITEST project titled, Virginia Tech Partnering with Educators and Engineers in Rural Schools (VT PEERS). Through this project, we sought to improve youth awareness of and preparation for engineering related careers and educational pathways. Utilizing regular engagement in engineering-aligned classroom activities and culturally relevant programming, we sought to spark an interest with some students. In addition, our project involves a partnership with teachers, school districts, and local industry to provide a holistic and, hopefully, sustainable influence. By engaging over time we aspired to promote sustainability beyond this NSF projectmore »via increased teacher confidence with engineering related activities, continued integration within their science curriculum, and continued relationships with local industry. From the 2017-2020 school years the project has been in seven schools across three rural counties. Each year a grade level was added; that is, the teachers and students from the first year remained for all three years. Year 1 included eight 6th grade science teachers, year 2 added eight 7th grade science teachers, and year 3 added three 8th grade science teachers and a career and technology teacher. The number of students increased from over 500 students in year 1 to over 2500 in year 3. Our three industry partners have remained active throughout the project. During the third and final year in the classrooms, we focused on the sustainable aspects of the project. In particular, on how the intervention support has evolved each year based on data, support requests from the school divisions, and in scaffolding “ownership” of the engineering activities. Qualitative data were used to support our understanding of teachers’ confidence to incorporate engineering into their lessons plans and how their confidence changed over time. Noteworthy, our student data analysis resulted in an instrument change for the third year; however due to COVID, pre and post data was limited to schools who taught on a semester basis. Throughout the project we have utilized the ITEST STEM Workforce Education Helix model to support a pragmatic approach of our research informing our practice to enable an “iterative relationship between STEM content development and STEM career development activities… within the cultural context of schools, with teachers supported by professional development, and through programs supported by effective partnerships.” For example, over the course of the project, scaffolding from the University leading interventions to teachers leading interventions occurred.« less
  2. Our NSF-funded ITEST project focuses on the collaborative design, implementation, and study of recurrent hands-on engineering activities with middle school youth in three rural communities in or near Appalachia. To achieve this aim, our team of faculty and graduate students partner with school educators and industry experts embedded in students’ local communities to collectively develop curriculum to aim at teacher-identified science standard and facilitate regular in-class interventions throughout the academic year. Leveraging local expertise is especially critical in this project because family pressures, cultural milieu, and preference for local, stable jobs play considerable roles in how Appalachian youth choose possible careers. Our partner communities have voluntarily opted to participate with us in a shared implementation-research program and as our project unfolds we are responsive to community-identified needs and preferences while maintaining the research program’s integrity. Our primary focus has been working to incorporate hands-on activities into science classrooms aimed at state science standards in recognition of the demands placed on teachers to align classroom time with state standards and associated standardized achievement tests. Our focus on serving diverse communities while being attentive to relevant research such as the preference for local, stable jobs attention to cultural relevance led us tomore »reach out to advanced manufacturing facilities based in the target communities in order to enhance the connection students and teachers feel to local engineers. Each manufacturer has committed to designating several employees (engineers) to co-facilitate interventions six times each academic year. Launching our project has involved coordination across stakeholder groups to understand distinct values, goals, strengths and needs. In the first academic year, we are working with 9 different 6th grade science teachers across 7 schools in 3 counties. Co-facilitating in the classroom are representatives from our project team, graduate student volunteers from across the college of engineering, and volunteering engineers from our three industry partners. Developing this multi-stakeholder partnership has involved discussions and approvals across both school systems (e.g., superintendents, STEM coordinators, teachers) and our industry partners (e.g., managers, HR staff, volunteering engineers). The aim of this engagement-in-practice paper is to explore our lessons learned in navigating the day-to-day challenges of (1) developing and facilitating curriculum at the intersection of science standards, hands-on activities, cultural relevancy, and engineering thinking, (2) collaborating with volunteers from our industry partners and within our own college of engineering in order to deliver content in every science class of our 9 6th grade teachers one full school day/month, and (3) adapting to emergent needs that arise due to school and division differences (e.g., logistics of scheduling and curriculum pacing), community differences across our three counties (e.g., available resources in schools), and partner constraints.« less
  3. African-American and Hispanic males are significantly underrepresented in STEM. While youth start narrowing their career choices in middle school, National Maker programs rarely specifically target minority males. Four Historically Black Colleges/Universities (HBCUs), in partnership with The Verizon Foundation, have established Maker communities in underserved urban and rural communities. The Minority Male Maker Program allows middle school students and their teachers to develop science, technology, engineering, and mathematics (STEM) skills while expressing their creativity. The long term goals of this project are to increase participant interest in STEM careers and college attendance. In the short term, we anticipate increased technology proficiency, STEM engagement and academic achievement. Additional outcomes include increased teacher and mentor understanding of STEM instruction delivery and mentorship. Panelists will discuss disparities facing men of color and a new National program designed to provide early exposure to STEM. Recommendations for developing programs targeting minority male students will be discussed.
  4. This paper provides detailed information for a poster that will be presented in the National Science Foundation (NSF) Grantees Poster Session during the 2020 ASEE Annual Conference & Exposition. The poster describes the progress and the state of an NSF Scholarships in Science, Technology, Engineering, and Math (S-STEM) project. The objectives of this project are to 1) enhance student learning by providing access to extra- and co-curricular experiences, 2) create a positive student experience through mentorship, and 3) ensure successful student placement in the STEM workforce or graduate school. S-STEM Scholars supported by this program receive financial, academic, professional, and social development via various evidence-based activities integrated throughout their four-year undergraduate degrees beginning during the summer prior to starting at the University. The paper describes the characteristics (demographics, high school GPA, ACT/SAT scores, etc.) of the Scholars supported by the S-STEM grant. The paper also provides information about the completed tasks of the project to date. The completed tasks include a system for recruiting academically talented and economically disadvantaged students, a Summer Bridge Program (SBP), a first semester introductory engineering course, and a system to recruit and maintain faculty mentors. The ongoing tasks include the execution of a service learningmore »project course and a system for recruiting industry mentors. This paper reports detailed assessment and evaluation data about different project tasks and the academic success metrics of the Scholars. It also lists a set of recommendations based on the lessons learned in this S-STEM project.« less
  5. his project is supported by an NSF BPE grant. Career choices, such as engineering, are influenced by a number of factors including personal interest, ability, competence beliefs, prior work-related experience, and financial and social supports. However, financial and social support, a particularly significant factor for rural students’ career decisions, is often overlooked in the literature exploring career choice. Moreover, little work has explored how communities serve as key influencers for supporting or promoting engineering as a career choice. Therefore, the goal of this study is to explore the ways in which communities provide support to students deciding to pursue engineering as a college major. To better understand how students from selected rural area high schools choose engineering as a major, we conducted focus group discussions consisting of 4-6 students each from selected schools to talk collectively about their high school experiences and their choice to major in engineering. Choosing focus group participants from different schools enabled us to elicit tacit perceptions and beliefs that may not be evident when students from the same community talk with one another. That is, as students share their experiences across schools, they may recognize differences in their experiences that, though otherwise unconscious or unacknowledged,more »proved significant in their choice of college and major. We expect that certain community programs and the individuals involved will have some influence on students’ decisions to study engineering at [University Name]. We anticipate that the results will yield two key outcomes: 1. A holistic understanding of the communities that effectively support and encourage engineering major choice for rural students. 2. Locally driven, contextually relevant recommendations for policies and programs that would better enable economically disadvantaged, rural schools in southwestern Virginia to support engineering as a career choice for high school students. By understanding the ways some economically-disadvantaged rural communities support engineering as a career choice and linking a broad spectrum of rural communities together around this issue, this project will broaden participation in engineering by increasing support for students from these areas. By shifting our focus from students to communities, this research broadens our understanding of career choice by capturing the perspectives of community members (including not only school personnel, but also community leaders, students’ families, business owners and others) who often play a key role in students’ decisions, particularly in rural communities. Our research will bring these voices into the conversation to help scholars learn from and respond to these essential community perspectives. In doing so, we will provide a more nuanced model of engineering career choice that can then be explored in other rural contexts. This work thus contributes to the research on career choice, rural education, and engineering education. © 2018 American Society for Engineering Education« less