Rural youth need more opportunities to participate in enriching STEM experiences and career pathways compared to their peers in urban areas. This study explores local mentors' role in shaping these pathways and addressing challenges related to STEM mentoring for rural youth. Through a three-year STEM program incorporating programmable sensor and 3D printing technology curricula, we establish a typology of mentors and examine their interactions with middle school youth. Analyzing recorded youth-mentor interactions, we identified several practical mentoring approaches. Our findings highlight the crucial contribution of mentors in the rural STEM learning ecosystem, as they foster possibilities and open avenues for disadvantaged youth to envision bright futures and dream of exciting opportunities in STEM.
more »
« less
Integrating Professional Mentorship with a 3D-Printing Curriculum to Help Rural Youth Forge STEM Career Connections.
Economically disadvantaged youth residing in mountain tourist communities represent an important and understudied rural population. These communities typically include a large percentage of children that are English language learners. Our NSF STEM Career Connections project, A Model for Preparing Economically-Disadvantaged Rural Youth for the Future STEM Workplace, investigates strategies that help middle school youth in these communities to envision a broader range of workforce opportunities, especially in STEM and computing careers. This poster highlights the initial findings of an innovative model that involves working with local schools and community partners to support the integration of local career contexts, engineering phenomena, 3D printing technologies, career connections, and mentorship into formal educational experiences to motivate and prepare rural youth for future STEM careers. We focus on select classrooms at two middle schools and describe the implementation of a novel 3D printing curriculum during the 2020-2021 school-year. Two STEM teachers implemented the five-week curriculum with approximately 300 students per quarter. To create a rich inquiry-driven learning environment, the curriculum uses an instructional design approach called storylining. This approach is intended to promote coherence, relevance, and meaning from the students’ perspectives by using students’ questions to drive investigations and lessons. Students worked towards answering the question: “How can we support animals with physical disabilities so they can perform daily activities independently?” Students engaged in the engineering design process by defining, developing, and optimizing solutions to develop and print prosthetic limbs for animals with disabilities using 3D modeling, a unique augmented reality application, and 3D printing. In order to embed connections to STEM careers and career pathways, some students received mentorship and guidance from local STEM professionals who work in related fields. This poster will describe the curriculum and its implementation across two quarters at two middle schools in the US rural mountain west, as well as the impact on students’ interest in STEM and computing careers. During the first quarter students engaged in the 3D printing curriculum, but did not have access to the STEM career and career pathway connections mentorship piece. During the second quarter, the project established a partnership with a local STEM business -- a medical research institute that utilizes 3D printing and scanning for creating human surgical devices and procedures -- to provide mentorship to the students. Volunteers from this institute served as ongoing mentors for the students in each classroom during the second quarter. The STEM mentors guided students through the process of designing, testing, and optimizing their 3D models and 3D printed prosthetics, providing insights into how students’ learning directly applies to the medical industry. Different forms of student data such as cognitive interviews and pre/post STEM interest and spatial thinking surveys were collected and analyzed to understand the benefits of the career connections mentorship component. Preliminary findings suggest the relationship between local STEM businesses and students is important to motivate youth from rural areas to see themselves being successful in STEM careers and helping them to realize the benefits of engaging with emerging engineering technologies.
more »
« less
- Award ID(s):
- 1948709
- PAR ID:
- 10320047
- Date Published:
- Journal Name:
- 2021 ASEE Virtual Annual Conference.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Our study investigates the first year of a two-year place-based education (PBE) professional development model that focuses on career development in rural middle schools through project-based learning (PBL) units. Rural science, technology, engineering, and mathematics (STEM) educators face unique challenges, including geographic isolation, limited resources, and reduced access to professional development opportunities, which can hinder the effective integration of career-oriented learning in the classroom. We addressed these challenges by implementing professional development in which school counselors and teachers collaborate to design PBL units aligned with rural community local needs and STEM careers. Using a descriptive multiple-case study methodology to document the experiences of three teams of educators, we used cross-case analysis to explore how the teams integrated PBL and PBE principles to foster meaningful learning experiences and enhance career awareness among students. The research questions focused on each team’s implementation of the PBL units based on key PBL design elements and how they integrated local community connections and places. Initial findings suggest that while teams effectively engaged with community members and integrated STEM career connections, they faced challenges in broadly applying learning and assessment practices. We highlight the potential of PBE to enhance rural STEM education and emphasize the need for long-term professional development to equip teachers with the skills necessary to integrate STEM content and career development effectively.more » « less
-
Despite limited success in broadening participation in engineering with rural and Appalachian youth, there remain challenges such as misunderstandings around engineering careers, misalignments with youth’s sociocultural background, and other environmental barriers. In addition, middle school science teachers may be unfamiliar with engineering or how to integrate engineering concepts into science lessons. Furthermore, teachers interested in incorporating engineering into their curriculum may not have the time or resources to do so. The result may be single interventions such as a professional development workshop for teachers or a career day for students. However, those are unlikely to cause major change or sustained interest development. To address these challenges, we have undertaken our NSF ITEST project titled, Virginia Tech Partnering with Educators and Engineers in Rural Schools (VT PEERS). Through this project, we sought to improve youth awareness of and preparation for engineering related careers and educational pathways. Utilizing regular engagement in engineering-aligned classroom activities and culturally relevant programming, we sought to spark an interest with some students. In addition, our project involves a partnership with teachers, school districts, and local industry to provide a holistic and, hopefully, sustainable influence. By engaging over time we aspired to promote sustainability beyond this NSF project via increased teacher confidence with engineering related activities, continued integration within their science curriculum, and continued relationships with local industry. From the 2017-2020 school years the project has been in seven schools across three rural counties. Each year a grade level was added; that is, the teachers and students from the first year remained for all three years. Year 1 included eight 6th grade science teachers, year 2 added eight 7th grade science teachers, and year 3 added three 8th grade science teachers and a career and technology teacher. The number of students increased from over 500 students in year 1 to over 2500 in year 3. Our three industry partners have remained active throughout the project. During the third and final year in the classrooms, we focused on the sustainable aspects of the project. In particular, on how the intervention support has evolved each year based on data, support requests from the school divisions, and in scaffolding “ownership” of the engineering activities. Qualitative data were used to support our understanding of teachers’ confidence to incorporate engineering into their lessons plans and how their confidence changed over time. Noteworthy, our student data analysis resulted in an instrument change for the third year; however due to COVID, pre and post data was limited to schools who taught on a semester basis. Throughout the project we have utilized the ITEST STEM Workforce Education Helix model to support a pragmatic approach of our research informing our practice to enable an “iterative relationship between STEM content development and STEM career development activities… within the cultural context of schools, with teachers supported by professional development, and through programs supported by effective partnerships.” For example, over the course of the project, scaffolding from the University leading interventions to teachers leading interventions occurred.more » « less
-
African-American and Hispanic males are significantly underrepresented in STEM. While youth start narrowing their career choices in middle school, National Maker programs rarely specifically target minority males. Four Historically Black Colleges/Universities (HBCUs), in partnership with The Verizon Foundation, have established Maker communities in underserved urban and rural communities. The Minority Male Maker Program allows middle school students and their teachers to develop science, technology, engineering, and mathematics (STEM) skills while expressing their creativity. The long term goals of this project are to increase participant interest in STEM careers and college attendance. In the short term, we anticipate increased technology proficiency, STEM engagement and academic achievement. Additional outcomes include increased teacher and mentor understanding of STEM instruction delivery and mentorship. Panelists will discuss disparities facing men of color and a new National program designed to provide early exposure to STEM. Recommendations for developing programs targeting minority male students will be discussed.more » « less
-
Abstract In STEM (science, technology, engineering, and math) fields, people with disabilities are underrepresented. This study aimed to determine what barriers might prevent students with and without disabilities from pursuing STEM careers. Differences in students’ interest in enrolling in advanced STEM courses and having a STEM career were evaluated in a sample of 438 students with (24.9%) and without disabilities (Mage = 15.09, SD = .82) recruited from public high schools in Southeastern United States. Differences in their interest in enrolling in advanced STEM courses and having a STEM career were evaluated. Although students with disabilities report lower interest in enrolling in advanced STEM courses they have the same interest in STEM careers as students without disabilities. Moreover, students with disabilities report higher rates of discrimination and more educational barriers than students without disabilities. Schools should focus on providing specific support to students with disabilities to ensure that their educational experiences are equitable.more » « less
An official website of the United States government

