Economically disadvantaged youth residing in mountain tourist communities represent an important and understudied rural population. These communities typically include a large percentage of children that are English language learners. Our NSF STEM Career Connections project, A Model for Preparing Economically-Disadvantaged Rural Youth for the Future STEM Workplace, investigates strategies that help middle school youth in these communities to envision a broader range of workforce opportunities, especially in STEM and computing careers. This poster highlights the initial findings of an innovative model that involves working with local schools and community partners to support the integration of local career contexts, engineering phenomena, 3D printing technologies, career connections, and mentorship into formal educational experiences to motivate and prepare rural youth for future STEM careers. We focus on select classrooms at two middle schools and describe the implementation of a novel 3D printing curriculum during the 2020-2021 school-year. Two STEM teachers implemented the five-week curriculum with approximately 300 students per quarter. To create a rich inquiry-driven learning environment, the curriculum uses an instructional design approach called storylining. This approach is intended to promote coherence, relevance, and meaning from the students’ perspectives by using students’ questions to drive investigations and lessons. Students worked towards answering the question: “How can we support animals with physical disabilities so they can perform daily activities independently?” Students engaged in the engineering design process by defining, developing, and optimizing solutions to develop and print prosthetic limbs for animals with disabilities using 3D modeling, a unique augmented reality application, and 3D printing. In order to embed connections to STEM careers and career pathways, some students received mentorship and guidance from local STEM professionals who work in related fields. This poster will describe the curriculum and its implementation across two quarters at two middle schools in the US rural mountain west, as well as the impact on students’ interest in STEM and computing careers. During the first quarter students engaged in the 3D printing curriculum, but did not have access to the STEM career and career pathway connections mentorship piece. During the second quarter, the project established a partnership with a local STEM business -- a medical research institute that utilizes 3D printing and scanning for creating human surgical devices and procedures -- to provide mentorship to the students. Volunteers from this institute served as ongoing mentors for the students in each classroom during the second quarter. The STEM mentors guided students through the process of designing, testing, and optimizing their 3D models and 3D printed prosthetics, providing insights into how students’ learning directly applies to the medical industry. Different forms of student data such as cognitive interviews and pre/post STEM interest and spatial thinking surveys were collected and analyzed to understand the benefits of the career connections mentorship component. Preliminary findings suggest the relationship between local STEM businesses and students is important to motivate youth from rural areas to see themselves being successful in STEM careers and helping them to realize the benefits of engaging with emerging engineering technologies.
more »
« less
STEMentor: A Mentorship Typology for Supporting Effective Youth-Mentor Interactions in Rural Communities
Rural youth need more opportunities to participate in enriching STEM experiences and career pathways compared to their peers in urban areas. This study explores local mentors' role in shaping these pathways and addressing challenges related to STEM mentoring for rural youth. Through a three-year STEM program incorporating programmable sensor and 3D printing technology curricula, we establish a typology of mentors and examine their interactions with middle school youth. Analyzing recorded youth-mentor interactions, we identified several practical mentoring approaches. Our findings highlight the crucial contribution of mentors in the rural STEM learning ecosystem, as they foster possibilities and open avenues for disadvantaged youth to envision bright futures and dream of exciting opportunities in STEM.
more »
« less
- Award ID(s):
- 1948709
- PAR ID:
- 10567701
- Publisher / Repository:
- American Education Research Association
- Date Published:
- Format(s):
- Medium: X
- Location:
- Philedelphia, PA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Rural students, schools, and communities have unique challenges that hinder academic achievement, growth, and opportunities, compared to other locales. While there is a need to study this community more, there is also a pressing need to bring the local community members together to support the future generation of learners in developing pathways that lead them to future career opportunities. This article focuses on how a Research Practice Partnership (RPP) can be developed in rural communities to support STEM pathways for local middle-school youth. RPPs are often described as long-term collaborations between both researchers and practitioners in which the participating partners leverage research to address specific persistent problems of practice. We present findings from a developing design-based RPP focused on bringing community members and organizations together to co-design opportunities for underserved youth in rural mountain communities.more » « less
-
The Alternative Pathways to Excellence (APEX) Program at the University of St. Thomas, funded by NSF as an S-STEM Track 2 project, aims to solidify transfer pathways, and assist Engineering students by providing financial, academic, and practical support. The successful integration of transfer students into engineering programs presents a unique set of challenges and opportunities for higher education institutions. The APEX program offers a spectrum of student support services, both structured and informal mentoring, curricular and co-curricular supports, and collaborative activities. The program is designed to forge accessible pathways into engineering careers for students with high academic potential, who are facing financial constraints by granting annual S-STEM scholarships to a select group of students. This paper describes a layered mentoring approach adopted by our team that encompasses both pre-application and post-application phases. We explore the pivotal roles played by peers, faculty members, and industry advisors in mentoring aspiring engineers through their educational journey. The paper describes the support structures and strategies implemented before students apply to engineering programs, shedding light on how early mentoring can influence students' preparedness and motivation to pursue engineering degrees. This paper also reports on the ongoing mentoring and support mechanisms vital for transfer students during their engineering studies. Peer mentoring, faculty mentoring, and industry advisor mentorship are all integral components of this stage. Furthermore, the paper discusses the training routines and strategies employed to prepare faculty, industry advisors, and peer mentors for their roles in supporting engineering students. This training ensures that mentors are equipped with the necessary skills and knowledge to guide students effectively, foster their academic growth, and nurture their professional aspirations.more » « less
-
This study examined the experiences of near-peer women mentors in an out-ofschool time (OST) STEM program for middle school girls of color. 11 mentors reported and reflected upon their overall experiences in interviews. Key findings include that, for example, training is an essential part of mentors’ work; they wish to have more training on pedagogy and more opportunities to bond with other mentors. This study extends the literature on STEM mentoring in OST environments, deepens the understanding of mentors’ experience in STEM programming, and provides important implications for mentor training and OST STEM program design, such as providing opportunities for reflective practices to understand mentor needs, supporting mentors’ non-STEM skill development, involving mentors in working towards the program goal, and fostering community building among women mentors.more » « less
-
Post-secondary students benefit from mentorships, which provide both emotional and academic support tailored to the unique challenges they face. STEM students, and, in particular, those with historically marginalized identities, have unique strengths and face distinct barriers that can be ameliorated by careful, knowledgeable, and well-situated mentoring relationships. With that in mind, we conducted a narrative case study with 10 rural-Appalachian STEM majors enrolled in an NSF-funded mentoring program, intending to collect stories of their impactful experiences with their mentors. We utilized the narrative reconstruction process, and, in so doing, identified five major themes related to the importance of mentor assignment and the impact of mentors’ characteristics and skills related to empathy, consistency, active listening, and teaching. We situate our findings within the existing literature and provide implications for scholars and practitioners who work with mentoring programs dedicated to working with Appalachian communities.more » « less