- Award ID(s):
- 1837382
- PAR ID:
- 10320067
- Date Published:
- Journal Name:
- Journal of Dynamic Systems, Measurement, and Control
- Volume:
- 144
- Issue:
- 3
- ISSN:
- 0022-0434
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
This paper considers the position and attitude tracking control problem of a vertical take-off and landing unmanned aerial vehicle with uncertainty and input constraints. Considering the parametric and non-parametric uncertainties in the dynamics of systems, a robust adaptive tracking controller is proposed with the aid of the special structure of the dynamics of the system. Considering the uncertainty and input constraints, a robust adaptive saturation controller is proposed with the aid of an auxiliary compensated system. Simulation results show the effectiveness of the proposed algorithms.more » « less
-
This article addresses the quadrotors’ safety-critical landing control problem with external uncertainties and collision avoidance. A geometrically robust hierarchical control strategy is proposed for an underactuated quadrotor, which consists of a slow outer loop controlling the position and a fast inner loop regulating the attitude. First, an estimation error quantified (EEQ) observer is developed to identify and compensate for the target’s linear acceleration and the translational disturbances, whose estimation error has a nonnegative upper bound. Furthermore, an outer-loop controller is designed by embedding the EEQ observer and control barrier functions (CBFs), in which the negative effects of external uncertainties, collision avoidance, and input saturation are thoroughly considered and effectively attenuated. For the inner-loop subsystem, a geometric controller with a robust integral of the sign of the error (RISE) control structure is developed to achieve disturbances rejection and asymptotic attitude tracking. Based on Lyapunov techniques and the theory of cascade systems, it is rigorously proven that the closed-loop system is uniformly ultimately bounded. Finally, the effectiveness of the proposed control strategy is demonstrated through numerical simulations and hardware experiments.more » « less
-
This paper addresses the problem of generating a position trajectory with pointing direction constraints at given waypoints for underactuated unmanned vehicles. The problem is initially posed on the configuration space ℝ 3 × ℝ 2 and thereafter, upon suitable modifications, is re-posed as a problem on the Lie group SE(3). This is done by determining a vector orthogonal to the pointing direction and using it as the vehicle's thrust direction. This translates to converting reduced attitude constraints to full attitude constraints at the waypoints. For the position trajectory, in addition to position constraints, this modification adds acceleration constraints at the waypoints. For real-time implementation with low computational expenses, a linear-quadratic regulator (LQR) approach is adopted to determine the position trajectory with smoothness upto the fourth time derivative of position (snap). For the attitude trajectory, the thrust direction extracted from the position trajectory is used to first propagate the attitude to the subsequent waypoint and then correct it over time to achieve the desired attitude at this waypoint. Finally, numerical simulation results are presented to validate the trajectory generation scheme.more » « less
-
Abstract In this work, we propose a novel adaptive formation control architecture for a group of quadrotor systems, under line‐of‐sight (LOS) distance and relative distance constraints as well as attitude constraints, where the constraint requirements can be both asymmetric and time‐varying in nature. The LOS distance constraint consideration ensures that each quadrotor is not deviating too far away from its desired flight trajectory. The LOS relative inter‐quadrotor distance constraint is to guarantee that the LOS distance between any two quadrotors in the formation is neither too large (which may result in the loss of communication between quadrotors, for example) nor too small (which may result in collision between quadrotors, for example). The attitude constraints make sure that the roll, pitch, and yaw angles of each quadrotor do not deviate too much from the desired profile. Universal barrier functions are adopted in the controller design and analysis, which is a generic framework that can address system with different types of constraints in a unified controller architecture. Furthermore, each quadrotor's mass and inertia are unknown, and the system dynamics are subjected to time‐varying external disturbances. Through rigorous analysis, an exponential convergence rate can be guaranteed on the distance and attitude tracking errors, while all constraints are satisfied during the operation. A simulation example further demonstrates the efficacy of the proposed control framework.
-
This paper presents a finite-time stable (FTS) attitude tracking control scheme in discrete time for an unmanned vehicle. The attitude tracking control scheme guarantees discrete-time stability of the feedback system in finite time. This scheme is developed in discrete time as it is more convenient for onboard computer implementation and guarantees stability irrespective of sampling period. Finite-time stability analysis of the discrete-time tracking control is carried out using discrete Lyapunov analysis. This tracking control scheme ensures stable convergence of attitude tracking errors to the desired trajectory in finite time. The advantages of finite-time stabilization in discrete time over finite-time stabilization of a sampled continuous time tracking control system is addressed in this paper through a numerical comparison. This comparison is performed using numerical simulations on continuous and discrete FTS tracking control schemes applied to an unmanned vehicle model.more » « less