This paper considers the position and attitude tracking control problem of a vertical take-off and landing unmanned aerial vehicle with uncertainty and input constraints. Considering the parametric and non-parametric uncertainties in the dynamics of systems, a robust adaptive tracking controller is proposed with the aid of the special structure of the dynamics of the system. Considering the uncertainty and input constraints, a robust adaptive saturation controller is proposed with the aid of an auxiliary compensated system. Simulation results show the effectiveness of the proposed algorithms. 
                        more » 
                        « less   
                    
                            
                            Tracking Control of UAVs with Uncertainty and Input Constraints
                        
                    
    
            This paper considers the position and attitude tracking control problem of a vertical take-off and landing unmanned aerial vehicle with uncertainty and input constraints. Considering the parametric and non-parametric uncertainties in the dynamics of systems, a robust adaptive tracking controller is proposed with the aid of the special structure of the dynamics of the system. Considering the uncertainty and input constraints, a robust adaptive saturation controller is proposed with the aid of an auxiliary compensated system. Simulation results show the effectiveness of the proposed algorithms. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2112650
- PAR ID:
- 10591469
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 978-1-6654-5196-3
- Page Range / eLocation ID:
- 1182 to 1187
- Format(s):
- Medium: X
- Location:
- Atlanta, GA, USA
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract This paper introduces an adaptive robust trajectory tracking controller design to provably realize stable bipedal robotic walking under parametric and unmodeled uncertainties. Deriving such a controller is challenging mainly because of the highly complex bipedal walking dynamics that are hybrid and involve nonlinear, uncontrolled state-triggered jumps. The main contribution of the study is the synthesis of a continuous-phase adaptive robust tracking control law for hybrid models of bipedal robotic walking by incorporating the construction of multiple Lyapunov functions into the control Lyapunov function. The evolution of the Lyapunov function across the state-triggered jumps is explicitly analyzed to construct sufficient conditions that guide the proposed control design for provably guaranteeing the stability and tracking the performance of the hybrid system in the presence of uncertainties. Simulation results on fully actuated bipedal robotic walking validate the effectiveness of the proposed approach in walking stabilization under uncertainties.more » « less
- 
            Achieving stable bipedal walking on surfaces with unknown motion remains a challenging control problem due to the hybrid, time-varying, partially unknown dynamics of the robot and the difficulty of accurate state and surface motion estimation. Surface motion imposes uncertainty on both system parameters and non-homogeneous disturbance in the walking robot dynamics. In this paper, we design an adaptive ankle torque controller to simultaneously address these two uncertainties and propose a step-length planner to minimize the required control torque. Typically, an adaptive controller is used for a continuous system. To apply adaptive control on a hybrid system such as a walking robot, an intermediate command profile is introduced to ensure a continuous error system. Simulations on a planar bipedal robot, along with comparisons against a baseline controller, demonstrate that the proposed approach effectively ensures stable walking and accurate tracking under unknown, time-varying disturbances.more » « less
- 
            null (Ed.)Real-time adaptation is imperative to the control of robots operating in complex, dynamic environments. Adaptive control laws can endow even nonlinear systems with good trajectory tracking performance, provided that any uncertain dynamics terms are linearly parameterizable with known nonlinear features. However, it is often difficult to specify such features a priori, such as for aerodynamic disturbances on rotorcraft or interaction forces between a manipulator arm and various objects. In this paper, we turn to data-driven modeling with neural networks to learn, offline from past data, an adaptive controller with an internal parametric model of these nonlinear features. Our key insight is that we can better prepare the controller for deployment with control-oriented meta-learning of features in closed-loop simulation, rather than regression-oriented meta-learning of features to fit input-output data. Specifically, we meta-learn the adaptive controller with closed-loop tracking simulation as the base-learner and the average tracking error as the meta-objective. With a nonlinear planar rotorcraft subject to wind, we demonstrate that our adaptive controller outperforms other controllers trained with regression-oriented meta-learning when deployed in closed-loop for trajectory tracking control.more » « less
- 
            This paper is focused on the output tracking control problem of a wave equation with both matched and unmatched boundary uncertainties. An adaptive boundary feedback control scheme is proposed by utilizing radial basis function neural networks (RBF NNs) to deal with the effect of system uncertainties. Specifically, two RBF NN models are first developed to approximate the matched and unmatched system uncertain dynamics respectively. Based on this, an adaptive NN control scheme is derived, which consists of: (i) an adaptive boundary feedback controller embedded by the NN model approximating the matched uncertainty, for rendering stable and accurate tracking control; and (ii) a reference model embedded by the NN model approximating the unmatched uncertainty, for generating a prescribed reference trajectory. Rigorous analysis is performed using the Lyapunov theory and the C0-semigroup theory to prove that our proposed control scheme can guarantee closed-loop stability and wellposedness. Simulation study has been conducted to demonstrate effectiveness of the proposed approach.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    