Many computer vision problems face difficulties when imaging through turbulent refractive media (e.g., air and water) due to the refraction and scattering of light. These effects cause geometric distortion that requires either hand-crafted physical priors or supervised learning methods to remove. In this paper, we present a novel unsupervised network to recover the latent distortion-free image. The key idea is to model non-rigid distortions as deformable grids. Our network consists of a grid deformer that estimates the distortion field and an image generator that outputs the distortion-free image. By leveraging the positional encoding operator, we can simplify the network structure while maintaining fine spatial details in the recovered images. Our method doesn’t need to be trained on labeled data and has good transferability across various turbulent image datasets with different types of distortions. Extensive experiments on both simulated and real-captured turbulent images demonstrate that our method can remove both air and water distortions without much customization.
more »
« less
Learning to Remove Refractive Distortions from Underwater Images
The fluctuation of the water surface causes refractive distortions that severely downgrade the image of an under- water scene. Here, we present the distortion-guided network (DG-Net) for restoring distortion-free underwater images. The key idea is to use a distortion map to guide net- work training. The distortion map models the pixel displacement caused by water refraction. We first use a physically constrained convolutional network to estimate the distortion map from the refracted image. We then use a gen- erative adversarial network guided by the distortion map to restore the sharp distortion-free image. Since the distortion map indicates correspondences between the distorted image and the distortion-free one, it guides the network to make better predictions. We evaluate our network on several real and synthetic underwater image datasets and show that it out-performs the state-of-the-art algorithms, especially in presence of large distortions. We also show results of complex scenarios, including outdoor swimming pool images captured by drone and indoor aquarium images taken by cellphone camera.
more »
« less
- Award ID(s):
- 1948524
- PAR ID:
- 10320127
- Date Published:
- Journal Name:
- CVF/IEEE International Conference on Computer Vision
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mobile Augmented Reality (AR), which overlays digital content on the real-world scenes surrounding a user, is bringing immersive interactive experiences where the real and virtual worlds are tightly coupled. To enable seamless and precise AR experiences, an image recognition system that can accurately recognize the object in the camera view with low system latency is required. However, due to the pervasiveness and severity of image distortions, an effective and robust image recognition solution for “in the wild” mobile AR is still elusive. In this article, we present CollabAR, an edge-assisted system that provides distortion-tolerant image recognition for mobile AR with imperceptible system latency. CollabAR incorporates both distortion-tolerant and collaborative image recognition modules in its design. The former enables distortion-adaptive image recognition to improve the robustness against image distortions, while the latter exploits the spatial-temporal correlation among mobile AR users to improve recognition accuracy. Moreover, as it is difficult to collect a large-scale image distortion dataset, we propose a Cycle-Consistent Generative Adversarial Network-based data augmentation method to synthesize realistic image distortion. Our evaluation demonstrates that CollabAR achieves over 85% recognition accuracy for “in the wild” images with severe distortions, while reducing the end-to-end system latency to as low as 18.2 ms.more » « less
-
Abstract Imaging underwater environments is of great importance to marine sciences, sustainability, climatology, defense, robotics, geology, space exploration, and food security. Despite advances in underwater imaging, most of the ocean and marine organisms remain unobserved and undiscovered. Existing methods for underwater imaging are unsuitable for scalable, long-term, in situ observations because they require tethering for power and communication. Here we describe underwater backscatter imaging, a method for scalable, real-time wireless imaging of underwater environments using fully-submerged battery-free cameras. The cameras power up from harvested acoustic energy, capture color images using ultra-low-power active illumination and a monochrome image sensor, and communicate wirelessly at net-zero-power via acoustic backscatter. We demonstrate wireless battery-free imaging of animals, plants, pollutants, and localization tags in enclosed and open-water environments. The method’s self-sustaining nature makes it desirable for massive, continuous, and long-term ocean deployments with many applications including marine life discovery, submarine surveillance, and underwater climate change monitoring.more » « less
-
Underwater image enhancement and turbidity removal (dehazing) is a very challenging problem, not only due to the sheer variety of environments where it is applicable, but also due to the lack of high-resolution, labelled image data. In this paper, we present a novel, two-step deep learning approach for underwater image dehazing and colour correction. In iDehaze, we leverage computer graphics to physically model light propagation in underwater conditions. Specifically, we construct a three-dimensional, photorealistic simulation of underwater environments, and use them to gather a large supervised training dataset. We then train a deep convolutional neural network to remove the haze in these images, then train a second network to transform the colour space of the dehazed images onto a target domain. Experiments demonstrate that our two-step iDehaze method is substantially more effective at producing high-quality underwater images, achieving state-of-the-art performance on multiple datasets. Code, data and benchmarks will be open sourced.more » « less
-
Object detection in high-resolution aerial images is a challenging task because of 1) the large variation in object size, and 2) non-uniform distribution of objects. A common solution is to divide the large aerial image into small (uniform) crops and then apply object detection on each small crop. In this paper, we investigate the image cropping strategy to address these challenges. Specifically, we propose a Density-Map guided object detection Network (DMNet), which is inspired from the observation that the object density map of an image presents how objects distribute in terms of the pixel intensity of the map. As pixel intensity varies, it is able to tell whether a region has objects or not, which in turn provides guidance for cropping images statistically. DMNet has three key components: a density map generation module, an image cropping module and an object detector. DMNet generates a density map and learns scale information based on density intensities to form cropping regions. Extensive experiments show that DMNet achieves state-of-the-art performance on two popular aerial image datasets, i.e. VisionDrone and UAVDT.more » « less
An official website of the United States government

