skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Vertical fluxes conditioned on vorticity and strain reveal submesoscale ventilation
Abstract It has been hypothesized that submesoscale flows play an important role in the vertical transport of climatically important tracers, due to their strong associated vertical velocities. However, the multi-scale, non-linear, and Lagrangian nature of transport makes it challenging to attribute proportions of the tracer fluxes to certain processes, scales, regions, or features. Here we show that criteria based on the surface vorticity and strain joint probability distribution function (JPDF) effectively decomposes the surface velocity field into distinguishable flow regions, and different flow features, like fronts or eddies, are contained in different flow regions. The JPDF has a distinct shape and approximately parses the flow into different scales, as stronger velocity gradients are usually associated with smaller scales. Conditioning the vertical tracer transport on the vorticity-strain JPDF can therefore help to attribute the transport to different types of flows and scales. Applied to a set of idealized Antarctic Circumpolar Current simulations that vary only in horizontal resolution, this diagnostic approach demonstrates that small-scale strain dominated regions that are generally associated with submesoscale fronts, despite their minuscule spatial footprint, play an outsized role in exchanging tracers across the mixed layer base and are an important contributor to the large-scale tracer budgets. Resolving these flows not only adds extra flux at the small scales, but also enhances the flux due to the larger-scale flows.  more » « less
Award ID(s):
1756882
PAR ID:
10320163
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Physical Oceanography
ISSN:
0022-3670
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Oceanic macroturbulence is efficient at stirring and transporting tracers. The dynamical properties of this stirring can be characterized by statistically quantifying tracer structures. Here, we characterize the macroscale (1–100 km) tracer structures observed by two Seagliders downstream of the Southwest Indian Ridge in the Antarctic Circumpolar Current (ACC). These are some of the first glider observations in an energetic standing meander of the ACC, a region associated with enhanced ventilation. The small‐scale density variance in the mixed layer (ML) was relatively enhanced near the surface and base of the ML, while being muted at mid‐depth in the ML, suggesting the formation mechanism to be associated with ML instabilities and eddies. In addition, ML density fronts were formed by comparable contributions from temperature and salinity gradients. In the interior, along‐isopycnal spectra and structure functions of spice indicated that there is relatively lower variance at smaller scales than would be expected based on non‐local stirring, suggesting that flows smaller than the deformation radius play a role in the cascade of tracers to small scales. These interior spice anomalies spanned across isopycnals, and were found to be about 3–5 times flatter than the aspect ratio that would be expected for O(1) Burger number flows like interior QG dynamics, suggesting the ratio of vertical shear to horizontal strain is greater thanN/f. This further supports that small‐scale flows, with high‐mode vertical structures, impact tracer distributions. 
    more » « less
  2. Oceanic motions across meso‐, submeso‐, and turbulent scales play distinct roles in vertical heat transport (VHT) between the ocean's surface and its interior. While it is commonly understood that during summertime the enhanced stratification due to increased solar radiation typically results in an reduced upper‐ocean vertical exchange, our study reveals a significant upward VHT associated with submesoscale fronts (<30 km) through high‐resolution observations in the eddy‐active South China Sea. The observation‐based VHT reaches ∼100 W m−2and extends to ∼150 m deep at the fronts between eddies. Combined with microstructure observations, this study demonstrates that mixing process can only partly offset the strong upward VHT by inducing a downward heat flux of 0.5–10 W m−2. Thus, the submesoscale‐associated VHT is effectively heating the subsurface layer. These findings offer a quantitative perspective on the scale‐dependent nature of VHT, with crucial implications for the climate system. 
    more » « less
  3. Abstract Concentrated poleward flows near the eastern boundaries between 2- and 4-km depth have been observed repeatedly, particularly in the Southern Hemisphere. These deep eastern boundary currents (DEBCs) play an important role in setting the large-scale tracer distribution and have nonnegligible contribution to global transports of mass, heat, and tracers, but their dynamics are not well understood. In this paper, we first demonstrate the significant role of DEBCs in the southeastern Atlantic, Indian, and Pacific Oceans, using the Southern Ocean State Estimate (SOSE) data assimilating product, and using high-resolution regional general circulation model configurations. The vorticity balances of these DEBCs reveal that, over most of the width of such currents, they are in an interior-like vorticity budget, with the meridional advection of planetary vorticity βυ and vortex stretching fw z being the largest two terms, and with contributions of nonlinearity and friction that are of smaller spatial scale. The stretching is shown, using a temperature budget, to be largely forced by resolved or parameterized eddy temperature transport. Strongly decaying signals from the eastern boundary in friction and stretching form the dominant balance in a sublayer close to the eastern boundary. The temporal variability of DEBCs is then examined, to help to interpret observations that tend to be sporadic in both time and space. The probability distribution functions of northward velocity in DEBC regions are broad, implying that flow reversals are common. Although the regions of the simulated DEBCs are generally local minima of eddy kinetic energy, they are still constantly releasing westward-propagating Rossby waves. 
    more » « less
  4. The stirring and mixing of heat and momentum in the ocean surface boundary layer (OSBL) are dominated by 1 to 10 km fluid flows – too small to be resolved in global and regional ocean models. Instead, these processes are parametrized. Two main parametrizations include vertical mixing by surface-forced metre-scale turbulence and overturning by kilometre-scale submesoscale frontal flows and instabilities. In present models, these distinct parametrizations are implemented in tandem, yet ignore meaningful interactions between these two scales that may influence net turbulent fluxes. Using a large-eddy simulation of frontal spin down resolving processes at both scales, this work diagnoses submesoscale and surface-forced turbulence impacts that are the foundation of OSBL parametrizations, following a traditional understanding of these flows. It is shown that frontal circulations act to suppress the vertical buoyancy flux by surface forced turbulence, and that this suppression is not represented by traditional boundary layer turbulence theory. A main result of this work is that current OSBL parametrizations excessively mix buoyancy and overestimate turbulence dissipation rates in the presence of lateral flows. These interactions have a direct influence on the upper ocean potential vorticity and energy budgets with implications for global upper ocean budgets and circulation. 
    more » « less
  5. Abstract. The patterns of the large-scale, meso- and submesoscale surface circulation on biogeochemical and biological distributions are examined in the western tropical South Pacific (WTSP) in the context of the OUTPACE cruise (February–April 2015). Multi-disciplinary original in situ observations were achieved along a zonal transect through the WTSP and their analysis was coupled with satellite data. The use of Lagrangian diagnostics allows for the identification of water mass pathways, mesoscale structures, and submesoscale features such as fronts. In particular, we confirmed the existence of a global wind-driven southward circulation of surface waters in the entire WTSP, using a new high-resolution altimetry-derived product, validated by in situ drifters, that includes cyclogeostrophy and Ekman components with geostrophy. The mesoscale activity is shown to be responsible for counter-intuitive water mass trajectories in two subregions: (i) the Coral Sea, with surface exchanges between the North Vanuatu Jet and the North Caledonian Jet, and (ii) around 170°W, with an eastward pathway, whereas a westward general direction dominates. Fronts and small-scale features, detected with finite-size Lyapunov exponents (FSLEs), are correlated with 25% of surface tracer gradients, which reveals the significance of such structures in the generation of submesoscale surface gradients. Additionally, two high-frequency sampling transects of biogeochemical parameters and microorganism abundances demonstrate the influence of fronts in controlling the spatial distribution of bacteria and phytoplankton, and as a consequence the microbial community structure. All circulation scales play an important role that has to be taken into account not only when analysing the data from OUTPACE but also, more generally, for understanding the global distribution of biogeochemical components. 
    more » « less