skip to main content

Title: Seismicity recorded in hematite fault mirrors in the Rio Grande rift
Abstract Exhumed fault rocks provide a textural and chemical record of how fault zone composition and architecture control coseismic temperature rise and earthquake mechanics. We integrated field, microstructural, and hematite (U-Th)/He (He) thermochronometry analyses of exhumed minor (square-centimeter-scale surface area) hematite fault mirrors that crosscut the ca. 1400 Ma Sandia granite in two localities along the eastern flank of the central Rio Grande rift, New Mexico. We used these data to characterize fault slip textures; evaluate relationships among fault zone composition, thickness, and inferred magnitude of friction-generated heat; and document the timing of fault slip. Hematite fault mirrors are collocated with and crosscut specular hematite veins and hematite-cemented cataclasite. Observed fault mirror microstructures reflect fault reactivation and strain localization within the comparatively weaker hematite relative to the granite. The fault mirror volume of some slip surfaces exhibits polygonal, sintered hematite nanoparticles likely created during coseismic temperature rise. Individual fault mirror hematite He dates range from ca. 97 to 5 Ma, and ~80% of dates from fault mirror volume aliquots with high-temperature crystal morphologies are ca. 25–10 Ma. These aliquots have grain-size–dependent closure temperatures of ~75–108 °C. A new mean apatite He date of 13.6 ± 2.6 Ma from the Sandia more » granite is consistent with prior low-temperature thermochronometry data and reflects rapid, Miocene rift flank exhumation. Comparisons of thermal history models and hematite He data patterns, together with field and microstructural observations, indicate that seismicity along the fault mirrors at ~2–4 km depth was coeval with rift flank exhumation. The prevalence and distribution of high-temperature hematite grain morphologies on different slip surfaces correspond with thinner deforming zones and higher proportions of quartz and feldspar derived from the granite that impacted the bulk strength of the deforming zone. Thus, these exhumed fault mirrors illustrate how evolving fault material properties reflect but also govern coseismic temperature rise and associated dynamic weakening mechanisms on minor faults at the upper end of the seismogenic zone. « less
Authors:
; ; ;
Award ID(s):
1952905 1654628
Publication Date:
NSF-PAR ID:
10320174
Journal Name:
Geosphere
Volume:
18
Issue:
1
ISSN:
1553-040X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cooling ages of tectonic blocks between the Yakutat microplate and the Fairweather transform boundary fault reveal exhumation due to strike-slip faulting and subsequent collision into this tectonic corner. The Yakutat and Boundary faults are splay faults that define tectonic panels with bounding faults that have evidence of both reverse and strike-slip motion, and they are parallel to the northern end of the Fairweather fault. Uplift and exhumation simultaneous with strike-slip motion have been significant since the late Miocene. The blocks are part of an actively deforming tectonic corner, as indicated by the ~14–1.5 m of coseismic uplift from the M 8.1 Yakutat Bay earthquake of 1899 and 4 m of strike-slip motion in the M 7.9 Lituya Bay earthquake in 1958 along the Fairweather fault. New apatite (U-Th-Sm)/He (AHe) and zircon (U-Th)/He (ZHe) data reveal that the Boundary block and the Russell Fiord block have different cooling histories since the Miocene, and thus the Boundary fault that separates them is an important tectonic boundary. Upper Cretaceous to Paleocene flysch of the Russell Fiord block experienced a thermal event at 50 Ma, then a relatively long period of burial until the late Miocene when initial exhumation resulted in ZHe ages betweenmore »7 and 3 Ma, and then very rapid exhumation in the last 1–1.5 m.y. Exhumation of the Russell Fiord block was accommodated by reverse faulting along the Yakutat fault and the newly proposed Calahonda fault, which is parallel to the Yakutat fault. The Eocene schist of Nunatak Fiord and 54–53 Ma Mount Stamy and Mount Draper granites in the Boundary block have AHe and ZHe cooling ages that indicate distinct and very rapid cooling between ca. 5 Ma and ca. 2 Ma. Rocks of the Chugach Metamorphic Complex to the northeast of the Fairweather fault and in the fault zone were brought up from 10–12 km at extremely high rates (>5 km/m.y.) since ca. 3 Ma, which implies a significant component of dip-slip motion along the Fairweather fault. The adjacent rocks of the Boundary block were exhumed with similar rates and from similar depths during the early Pliocene, when they may have been located 220–250 km farther south near Baranof Island. The profound and significant exhumation of the three tectonic blocks in the last 5 m.y. has probably been driven by uplift and erosional exhumation due to contraction as rocks collide into this tectonic corner. The documented spatial and temporal pattern of exhumation is in agreement with the southward shift of focused exhumation at the St. Elias syntaxial corner and the southeast propagation of the fold-and thrust belt.« less
  2. Abstract Evidence for coseismic temperature rise that induces dynamic weakening is challenging to directly observe and quantify in natural and experimental fault rocks. Hematite (U-Th)/He (hematite He) thermochronometry may serve as a fault-slip thermometer, sensitive to transient high temperatures associated with earthquakes. We test this hypothesis with hematite deformation experiments at seismic slip rates, using a rotary-shear geometry with an annular ring of silicon carbide (SiC) sliding against a specular hematite slab. Hematite is characterized before and after sliding via textural and hematite He analyses to quantify He loss over variable experimental conditions. Experiments yield slip surfaces localized in an ∼5–30-µm-thick layer of hematite gouge with <300-µm-diameter fault mirror (FM) zones made of sintered nanoparticles. Hematite He analyses of undeformed starting material are compared with those of FM and gouge run products from high-slip-velocity experiments, showing >71% ± 1% (1σ) and 18% ± 3% He loss, respectively. Documented He loss requires short-duration, high temperatures during slip. The spatial heterogeneity and enhanced He loss from FM zones are consistent with asperity flash heating (AFH). Asperities >200–300 µm in diameter, producing temperatures >900 °C for ∼1 ms, can explain observed He loss. Results provide new empirical evidence describing AFH and the rolemore »of coseismic temperature rise in FM formation. Hematite He thermochronometry can detect AFH and thus seismicity on natural FMs and other thin slip surfaces in the upper seismogenic zone of Earth’s crust.« less
  3. Exhumed faults record the temperatures produced by earthquakes. We show that transient elevated fault surface temperatures preserved in the rock record are quantifiable through microtextural analysis, fault-rock thermochronometry, and thermomechanical modeling. We apply this approach to a network of mirrored, minor, hematite-coated fault surfaces in the exhumed, seismogenic Wasatch fault zone, UT, USA. Polygonal and lobate hematite crystal morphologies, coupled with hematite (U–Th)/He data patterns from these surfaces and host rock apatite (U–Th)/He data, are best explained by friction-generated heat at slip interface geometric asperities. These observations inform thermomechanical simulations of flash heating at frictional contacts and resulting fractional He loss over generated fault surface time–temperature histories. Temperatures of >∼700–1200 °C, depending on asperity size, are sufficient to induce 85–100% He loss from hematite within 200 μm of the fault surface. Spatially-isolated, high-temperature microtextures imply spatially-variable heat generation and decay. Our results reveal that flash heating of asperities and associated frictional weakening likely promote small earthquakes (Mw≈−3 to 3) on Wasatch hematite fault mirrors. We suggest that similar thermal processes and resultant dynamic weakening may facilitate larger earthquakes.
  4. A microstructural and thermochronometric analysis of the Coyote Mountains detachment shear zone provides new insight into the collapse of the southern North American Cordillera. The Coyote Mountains is a metamorphic core complex that makes up the northern end of the Baboquivari Mountains in southern Arizona. The Baboquivari Mountains records several episodes of crustal shortening and thickening, and regional metamorphism, including the Late Cretaceous-early Paleogene Laramide orogeny which is locally expressed by the Baboquivari thrust fault. Thrusting and shortening were accompanied by magmatic activity recorded by intrusion of Paleocene muscovite-biotite-garnet peraluminous granites such as the ~58 Ma Pan Tak Granite, interpreted as anatectic melts representing the culmination of the Laramide orogeny. Following Laramide crustal shortening, the northern end of the Baboquivari Mountains was exhumed along a top-to-the-north detachment shear zone, which resulted in the formation of the Coyote Mountains metamorphic core complex. Structural and microstructural analysis show that the detachment shear zone evolved under a strong component of non-coaxial (simple shear) deformation, at deformation conditions of ~450 ± 50°C, under a differential stress of ~60 MPa, and a strain rate of 1.5 ×10-11 s-1 to 5.0 × 10-13 s-1 at depth of ~11–14 km. Detailed 40Ar/39Ar geochronology of biotite and muscovite,more »in the context of the deformation conditions determined by quartz microstructures, suggests that the mylonitization associated with the formation of the Coyote Mountains metamorphic core complex started at ~29 Ma (early Oligocene). Apatite fission track ages indicate that the footwall of the Coyote Mountains metamorphic core complex experienced rapid exhumation to the upper crust by ~24 Ma. The fact that mylonitization and rapid extensional exhumation post-dates Laramide thickening by ~30 Myr indicates that crustal thickness alone was insufficient to initiate extensional tectonic and required an additional driving force. The timing of mylonitization and rapid exhumation documented here and in other MCCs are consistent with the hypothesis that slab rollback and the effect of a slab window trailing the Mendocino Triple Junction have been critical in driving the development of the MCCs of the southwest.« less
  5. Crustal thickening has been a key process of collision-induced Cenozoic deformation along the Indus-Yarlung suture zone, yet the timing, geometric relationships, and along-strike continuities of major thrusts, such as the Great Counter thrust and Gangdese thrust, remain inadequately understood. In this study, we present findings of geologic mapping and thermo- and geochronologic, geochemical, microstructural, and geothermobarometric analyses from the easternmost Indus-Yarlung suture zone exposed in the northern Indo-Burma Ranges. Specifically, we investigate the Lohit and Tidding thrust shear zones and their respective hanging wall rocks of the Lohit Plutonic Complex and Tidding and Mayodia mélange complexes. Field observations are consistent with ductile deformation concentrated along the top-to-the-south Tidding thrust shear zone, which is in contrast to the top-to-the-north Great Counter thrust at the same structural position to the west. Upper amphibolite-facies metamorphism of mélange rocks at ∼9−10 kbar (∼34−39 km) occurred prior to ca. 36−30 Ma exhumation during slip along the Tidding thrust shear zone. To the north, the ∼5-km-wide Lohit thrust shear zone has a subvertical geometry and north-side-up kinematics. Cretaceous arc granitoids of the Lohit Plutonic Complex were emplaced at ∼32−40 km depth in crust estimated to be ∼38−52 km thick at that time. These rocks cooled frommore »ca. 25 Ma to 10 Ma due to slip along the Lohit thrust shear zone. We demonstrate that the Lohit thrust shear zone, Gangdese thrust, and Yarlung-Tsangpo Canyon thrust have comparable hanging wall and footwall rocks, structural geometries, kinematics, and timing. Based on these similarities, we interpret that these thrusts formed segments of a laterally continuous thrust system, which served as the preeminent crustal thickening structure along the Neotethys-southern Lhasa terrane margin and exhumed Gangdese lower arc crust in Oligocene−Miocene time.« less