skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Functional Hypoxia in Insects: Definition, Assessment, and Consequences for Physiology, Ecology, and Evolution
Insects can experience functional hypoxia, a situation in which O 2 supply is inadequate to meet oxygen demand. Assessing when functional hypoxia occurs is complex, because responses are graded, age and tissue dependent, and compensatory. Here, we compare information gained from metabolomics and transcriptional approaches and by manipulation of the partial pressure of oxygen. Functional hypoxia produces graded damage, including damaged macromolecules and inflammation. Insects respond by compensatory physiological and morphological changes in the tracheal system, metabolic reorganization, and suppression of activity, feeding, and growth. There is evidence for functional hypoxia in eggs, near the end of juvenile instars, and during molting. Functional hypoxia is more likely in species with lower O 2 availability or transport capacities and when O 2 need is great. Functional hypoxia occurs normally during insect development and is a factor in mediating life-history trade-offs.  more » « less
Award ID(s):
1557940
PAR ID:
10320289
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Annual Review of Entomology
Volume:
63
Issue:
1
ISSN:
0066-4170
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. White seabass ( Atractoscion nobilis) increasingly experience periods of low oxygen (O 2 ; hypoxia) and high carbon dioxide (CO 2 , hypercapnia) due to climate change and eutrophication of the coastal waters of California. Hemoglobin (Hb) is the principal O 2 carrier in the blood and in many teleost fishes Hb-O 2 binding is compromised at low pH; however, the red blood cells (RBC) of some species regulate intracellular pH with adrenergically stimulated sodium-proton-exchangers (β-NHEs). We hypothesized that RBC β-NHEs in white seabass are an important mechanism that can protect the blood O 2 -carrying capacity during hypoxia and hypercapnia. We determined the O 2 -binding characteristics of white seabass blood, the cellular and subcellular response of RBCs to adrenergic stimulation, and quantified the protective effect of β-NHE activity on Hb-O 2 saturation. White seabass had typical teleost Hb characteristics, with a moderate O 2 affinity (Po 2 at half-saturation; P 50 2.9 kPa) that was highly pH-sensitive (Bohr coefficient −0.92; Root effect 52%). Novel findings from super-resolution microscopy revealed β-NHE protein in vesicle-like structures and its translocation into the membrane after adrenergic stimulation. Microscopy data were corroborated by molecular and phylogenetic results and a functional characterization of β-NHE activity. The activation of RBC β-NHEs increased Hb-O 2 saturation by ∼8% in normoxic hypercapnia and by up to ∼20% in hypoxic normocapnia. Our results provide novel insight into the cellular mechanism of adrenergic RBC stimulation within an ecologically relevant context. β-NHE activity in white seabass has great potential to protect arterial O 2 transport during hypoxia and hypercapnia but is less effective during combinations of these stressors. 
    more » « less
  2. null (Ed.)
    ABSTRACT Aquatic insects cope with hypoxia and anoxia using a variety of behavioral and physiological responses. Most stoneflies (Plecoptera) occur in highly oxygenated surface waters, but some species live underground in alluvial aquifers containing heterogeneous oxygen concentrations. Aquifer stoneflies appear to be supported by methane-derived food resources, which they may exploit using anoxia-resistant behaviors. We documented dissolved oxygen dynamics and collected stoneflies over 5 years in floodplain wells of the Flathead River, Montana. Hypoxia regularly occurred in two wells, and nymphs of Paraperla frontalis were collected during hypoxic periods. We measured mass-specific metabolic rates (MSMRs) at different oxygen concentrations (12, 8, 6, 4, 2, 0.5 mg l −1 , and during recovery) for 111 stonefly nymphs to determine whether aquifer and benthic taxa differed in hypoxia tolerance. Metabolic rates of aquifer taxa were similar across oxygen concentrations spanning 2 to 12 mg l −1 ( P >0.437), but the MSMRs of benthic taxa dropped significantly with declining oxygen ( P <0.0001; 2.9-times lower at 2 vs. 12 mg l −1 ). Aquifer taxa tolerated short-term repeated exposure to extreme hypoxia surprisingly well (100% survival), but repeated longer-term (>12 h) exposures resulted in lower survival (38–91%) and lower MSMRs during recovery. Our work suggests that aquifer stoneflies have evolved a remarkable set of behavioral and physiological adaptations that allow them to exploit the unique food resources available in hypoxic zones. These adaptations help to explain how large-bodied consumers might thrive in the underground aquifers of diverse and productive river floodplains. 
    more » « less
  3. Developmental oxygen is a powerful stressor that can induce morphological and functional changes in the cardiovascular systems of embryonic and juvenile vertebrates. This plasticity has been ascribed, at least in part, to the unique status of the developing cardiovascular system, which undergoes organogenesis while meeting the tissue oxygen demands of the embryo. We have previously reported an array of functional and morphological changes in embryonic American alligators that persist into juvenile life. Most notably, cardiac enlargement as well as functional parameters of anesthetized juvenile alligators remains after embryonic hypoxic exposure. Because the effects of developmental oxygen in crocodilians have only been investigated in anesthetized animals, we explored the pressure dynamics of both ventricles as well as systemic pressure in response to stressors of acute hypoxia and swimming. Our current findings demonstrate that developmental programming of cardiac function (intraventricular pressure and heart rate) does persist into juvenile life, but it is chamber-specific and depends on the experimental manipulation. Acute hypoxic exposure revealed that juvenile alligators that had experienced 10% O 2 as embryos maintain right ventricle function and increase left ventricle function during exposure. Finally, the data indicate blood flow in the left aorta must originate from the left ventricle during acute hypoxia and swimming. 
    more » « less
  4. null (Ed.)
    Hypoxia and associated acidification are growing concerns for ecosystems and biogeochemical cycles in the coastal zone. The northern Gulf of Mexico (nGoM) has experienced large seasonal hypoxia for decades linked to the eutrophication of the continental shelf fueled by the Mississippi River nutrient discharge. Sediments play a key role in maintaining hypoxic and acidified bottom waters, but this role is still not completely understood. In the summer 2017, when the surface area of the hypoxic zone in the nGoM was the largest ever recorded, we investigated four stations on the continental shelf differentially influenced by river inputs of the Mississippi-Atchafalaya River System and seasonal hypoxia. We investigated diagenetic processes under normoxic, hypoxic, and nearly anoxic bottom waters by coupling amperometric, potentiometric, and voltammetric microprofiling with high-resolution diffusive equilibrium in thin-films (DET) profiles and porewater analyses. In addition, we used a time-series of bottom-water dissolved oxygen from May to November 2017, which indicated intense O 2 consumption in bottom waters related to organic carbon recycling. At the sediment-water interface (SWI), we found that oxygen consumption linked to organic matter recycling was large with diffusive oxygen uptake (DOU) of 8 and 14 mmol m –2 d –1 , except when the oxygen concentration was near anoxia (5 mmol m –2 d –1 ). Except at the station located near the Mississippi river outlet, the downcore pore water sulfate concentration decrease was limited, with little increase in alkalinity, dissolved inorganic carbon (DIC), ammonium, and phosphate suggesting that low oxygen conditions did not promote anoxic diagenesis as anticipated. We attributed the low anoxic diagenesis intensity to a limitation in organic substrate supply, possibly linked to the reduction of bioturbation during the hypoxic spring and summer. 
    more » « less
  5. Abstract Solid tumors are protected from antitumor immune responses due to their hypoxic microenvironments. Weakening hypoxia‐driven immunosuppression by hyperoxic breathing of 60% oxygen has shown to be effective in unleashing antitumor immune cells against solid tumors. However, efficacy of systemic oxygenation is limited against solid tumors outside of lungs and has been associated with unwanted side effects. As a result, it is essential to develop targeted oxygenation alternatives to weaken tumor hypoxia as novel approaches to restore immune responses against cancer. Herein, injectable oxygen‐generating cryogels (O2‐cryogels) to reverse tumor‐induced hypoxia are reported. These macroporous biomaterials are designed to locally deliver oxygen, inhibit the expression of hypoxia‐inducible genes in hypoxic melanoma cells, and reduce the accumulation of immunosuppressive extracellular adenosine. The data show that O2‐cryogels enhance T cell‐mediated secretion of cytotoxic proteins, restoring the killing ability of tumor‐specific cytotoxic T lymphocytes, both in vitro and in vivo. In summary, O2‐cryogels provide a unique and safe platform to supply oxygen as a coadjuvant in hypoxic tumors and have the potential to improve cancer immunotherapies. 
    more » « less