skip to main content


Title: Reduction of COVID-19 Incidence and Nonpharmacologic Interventions: Analysis Using a US County–Level Policy Data Set
Background Worldwide, nonpharmacologic interventions (NPIs) have been the main tool used to mitigate the COVID-19 pandemic. This includes social distancing measures (closing businesses, closing schools, and quarantining symptomatic persons) and contacttracing (tracking and following exposed individuals). While preliminary research across the globe has shown these policies to be effective, there is currently a lack of information on the effectiveness of NPIs in the United States. Objective The purpose of this study was to create a granular NPI data set at the county level and then analyze the relationship between NPI policies and changes in reported COVID-19 cases. Methods Using a standardized crowdsourcing methodology, we collected time-series data on 7 key NPIs for 1320 US counties. Results This open-source data set is the largest and most comprehensive collection of county NPI policy data and meets the need for higher-resolution COVID-19 policy data. Our analysis revealed a wide variation in county-level policies both within and among states (P<.001). We identified a correlation between workplace closures and lower growth rates of COVID-19 cases (P=.004). We found weak correlations between shelter-in-place enforcement and measures of Democratic local voter proportion (R=0.21) and elected leadership (R=0.22). Conclusions This study is the first large-scale NPI analysis at the county level demonstrating a correlation between NPIs and decreased rates of COVID-19. Future work using this data set will explore the relationship between county-level policies and COVID-19 transmission to optimize real-time policy formulation.  more » « less
Award ID(s):
2035361
NSF-PAR ID:
10320298
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Medical Internet Research
Volume:
22
Issue:
12
ISSN:
1438-8871
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The objective is to understand the role of emerging variants, vaccination, and NPI policies on COVID-19 infections and deaths. We aim to identify scenarios in which COVID-19 can be managed such that the death rate from COVID-19 becomes comparable with the combined annual mortality rate from influenza and pneumonia. As a case study for a large urban area, we simulate COVID-19 transmission in King County, Washington, (greater Seattle) using an agent- based simulation model. Calibrated to local epidemiological data, our study uses detailed synthetic population data and includes interactions between vaccination and specific NPIs while considering waning immunity and emergence of variants. Virus mutation scenarios include 12 combinations of infectivity, disease severity, and immune evasiveness. A highly effective pancoronavirus vaccine that works against all strains is considered an optimistic scenario. Our findings highlight the potential benefits of pancoronavirus vaccines that offer enhanced and longer-lasting immunity. We emphasize the crucial role of nonpharmaceutical interventions in reducing COVID-19 deaths regardless of virus mutation scenarios. Owing to highly immune evasive and contagious SARS-CoV-2 variants, most scenarios in this study fail to reduce the mortality of COVID-19 to the level of influenza and pneumonia. However, our findings indicate that periodic vaccinations and a threshold nonpharmaceutical intervention policy may succeed in achieving this goal. This indicates the need for caution and vigilance in managing a continuing COVID-19 epidemic. 
    more » « less
  2. null (Ed.)
    The policy induced decline of human mobility has been recognised as effective in controlling the spread of COVID-19, especially in the initial stage of the outbreak, although the relationship among mobility, policy implementation, and virus spread remains contentious. Coupling the data of confirmed COVID-19 cases with the Google mobility data in Australia, we present a state-level empirical study to: (1) inspect the temporal variation of the COVID-19 spread and the change of human mobility adherent to social restriction policies; (2) examine the extent to which different types of mobility are associated with the COVID-19 spread in eight Australian states/territories; and (3) analyse the time lag effect of mobility restriction on the COVID-19 spread. We find that social restriction policies implemented in the early stage of the pandemic controlled the COVID-19 spread effectively; the restriction of human mobility has a time lag effect on the growth rates of COVID-19, and the strength of the mobility-spread correlation increases up to seven days after policy implementation but decreases afterwards. The association between human mobility and COVID-19 spread varies across space and time and is subject to the types of mobility. Thus, it is important for government to consider the degree to which lockdown conditions can be eased by accounting for this dynamic mobility-spread relationship. 
    more » « less
  3. null (Ed.)
    Abstract The objective of this study is to examine the transmission risk of COVID-19 based on cross-county population co-location data from Facebook. The rapid spread of COVID-19 in the United States has imposed a major threat to public health, the real economy, and human well-being. With the absence of effective vaccines, the preventive actions of social distancing, travel reduction and stay-at-home orders are recognized as essential non-pharmacologic approaches to control the infection and spatial spread of COVID-19. Prior studies demonstrated that human movement and mobility drove the spatiotemporal distribution of COVID-19 in China. Little is known, however, about the patterns and effects of co-location reduction on cross-county transmission risk of COVID-19. This study utilizes Facebook co-location data for all counties in the United States from March to early May 2020 for conducting spatial network analysis where nodes represent counties and edge weights are associated with the co-location probability of populations of the counties. The analysis examines the synchronicity and time lag between travel reduction and pandemic growth trajectory to evaluate the efficacy of social distancing in ceasing the population co-location probabilities, and subsequently the growth in weekly new cases across counties. The results show that the mitigation effects of co-location reduction appear in the growth of weekly new confirmed cases with one week of delay. The analysis categorizes counties based on the number of confirmed COVID-19 cases and examines co-location patterns within and across groups. Significant segregation is found among different county groups. The results suggest that within-group co-location probabilities (e.g., co-location probabilities among counties with high numbers of cases) remain stable, and social distancing policies primarily resulted in reduced cross-group co-location probabilities (due to travel reduction from counties with large number of cases to counties with low numbers of cases). These findings could have important practical implications for local governments to inform their intervention measures for monitoring and reducing the spread of COVID-19, as well as for adoption in future pandemics. Public policy, economic forecasting, and epidemic modeling need to account for population co-location patterns in evaluating transmission risk of COVID-19 across counties. 
    more » « less
  4. Abstract Background

    Controlling the spread of infectious diseases―even when safe, transmission-blocking vaccines are available―may require the effective use of non-pharmaceutical interventions (NPIs), e.g., mask wearing, testing, limits on group sizes, venue closure. During the SARS-CoV-2 pandemic, many countries implemented NPIs inconsistently in space and time. This inconsistency was especially pronounced for policies in the United States of America (US) related to venue closure.

    Methods

    Here, we investigate the impact of inconsistent policies associated with venue closure using mathematical modeling and high-resolution human mobility, Google search, and county-level SARS-CoV-2 incidence data from the USA. Specifically, we look at high-resolution location data and perform a US-county-level analysis of nearly 8 million SARS-CoV-2 cases and 150 million location visits, including 120 million church visitors across 184,677 churches, 14 million grocery visitors across 7662 grocery stores, and 13.5 million gym visitors across 5483 gyms.

    Results

    Analyzing the interaction between venue closure and changing mobility using a mathematical model shows that, across a broad range of model parameters, inconsistent or partial closure can be worse in terms of disease transmission as compared to scenarios with no closures at all. Importantly, changes in mobility patterns due to epidemic control measures can lead to increase in the future number of cases. In the most severe cases, individuals traveling to neighboring jurisdictions with different closure policies can result in an outbreak that would otherwise have been contained. To motivate our mathematical models, we turn to mobility data and find that while stay-at-home orders and closures decreased contacts in most areas of the USA, some specific activities and venues saw an increase in attendance and an increase in the distance visitors traveled to attend. We support this finding using search query data, which clearly shows a shift in information seeking behavior concurrent with the changing mobility patterns.

    Conclusions

    While coarse-grained observations are not sufficient to validate our models, taken together, they highlight the potential unintended consequences of inconsistent epidemic control policies related to venue closure and stress the importance of balancing the societal needs of a population with the risk of an outbreak growing into a large epidemic.

     
    more » « less
  5. null (Ed.)
    Background Population mobility is closely associated with COVID-19 transmission, and it could be used as a proximal indicator to predict future outbreaks, which could inform proactive nonpharmaceutical interventions for disease control. South Carolina is one of the US states that reopened early, following which it experienced a sharp increase in COVID-19 cases. Objective The aims of this study are to examine the spatial-temporal relationship between population mobility and COVID-19 outbreaks and use population mobility data to predict daily new cases at both the state and county level in South Carolina. Methods This longitudinal study used disease surveillance data and Twitter-based population mobility data from March 6 to November 11, 2020, in South Carolina and its five counties with the largest number of cumulative confirmed COVID-19 cases. Population mobility was assessed based on the number of Twitter users with a travel distance greater than 0.5 miles. A Poisson count time series model was employed for COVID-19 forecasting. Results Population mobility was positively associated with state-level daily COVID-19 incidence as well as incidence in the top five counties (ie, Charleston, Greenville, Horry, Spartanburg, and Richland). At the state level, the final model with a time window within the last 7 days had the smallest prediction error, and the prediction accuracy was as high as 98.7%, 90.9%, and 81.6% for the next 3, 7, and 14 days, respectively. Among Charleston, Greenville, Horry, Spartanburg, and Richland counties, the best predictive models were established based on their observations in the last 9, 14, 28, 20, and 9 days, respectively. The 14-day prediction accuracy ranged from 60.3%-74.5%. Conclusions Using Twitter-based population mobility data could provide acceptable predictions of COVID-19 daily new cases at both the state and county level in South Carolina. Population mobility measured via social media data could inform proactive measures and resource relocations to curb disease outbreaks and their negative influences. 
    more » « less