Background Worldwide, nonpharmacologic interventions (NPIs) have been the main tool used to mitigate the COVID-19 pandemic. This includes social distancing measures (closing businesses, closing schools, and quarantining symptomatic persons) and contacttracing (tracking and following exposed individuals). While preliminary research across the globe has shown these policies to be effective, there is currently a lack of information on the effectiveness of NPIs in the United States. Objective The purpose of this study was to create a granular NPI data set at the county level and then analyze the relationship between NPI policies and changes in reported COVID-19 cases. Methods Using a standardized crowdsourcing methodology, we collected time-series data on 7 key NPIs for 1320 US counties. Results This open-source data set is the largest and most comprehensive collection of county NPI policy data and meets the need for higher-resolution COVID-19 policy data. Our analysis revealed a wide variation in county-level policies both within and among states (P<.001). We identified a correlation between workplace closures and lower growth rates of COVID-19 cases (P=.004). We found weak correlations between shelter-in-place enforcement and measures of Democratic local voter proportion (R=0.21) and elected leadership (R=0.22). Conclusions This study is the first large-scale NPI analysis at the county level demonstrating a correlation between NPIs and decreased rates of COVID-19. Future work using this data set will explore the relationship between county-level policies and COVID-19 transmission to optimize real-time policy formulation.
more »
« less
Leveraging data analytics to understand the relationship between restaurants’ safety violations and COVID-19 transmission
This paper leverages natural language processing, spatial analysis, and statistical analysis to examine the relationship between restaurants’ safety violations and COVID-19 cases. We used location-based consumers’ complaints data during the early stage of business reopening in Florida, USA. First, statistical analysis was conducted to examine the correlation between restaurants’ safety violations and COVID-19 transmission. Second, a neural network-based deep learning model was developed to perform topic modeling based on consumers’ complaints. Third, spatial modeling of the complaints’ geographic distributions was performed to identify the hotspots of consumers’ complaints and COVID-19 cases. The results reveal a positive relationship between consumers’ complaints about restaurants’ safety violations and COVID-19 cases. In particular, consumers’ complaints about personal protection measures had the highest correlation with COVID-19 cases, followed by environmental safety measures. Our analytical methods and findings shed light on customers’ behavioral shifts and hospitality businesses’ adaptive practices during a pandemic.
more »
« less
- Award ID(s):
- 1937833
- PAR ID:
- 10355712
- Date Published:
- Journal Name:
- International journal of hospitality management
- Volume:
- 104
- ISSN:
- 0278-4319
- Page Range / eLocation ID:
- 103241
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract The objective of this study is to examine the transmission risk of COVID-19 based on cross-county population co-location data from Facebook. The rapid spread of COVID-19 in the United States has imposed a major threat to public health, the real economy, and human well-being. With the absence of effective vaccines, the preventive actions of social distancing, travel reduction and stay-at-home orders are recognized as essential non-pharmacologic approaches to control the infection and spatial spread of COVID-19. Prior studies demonstrated that human movement and mobility drove the spatiotemporal distribution of COVID-19 in China. Little is known, however, about the patterns and effects of co-location reduction on cross-county transmission risk of COVID-19. This study utilizes Facebook co-location data for all counties in the United States from March to early May 2020 for conducting spatial network analysis where nodes represent counties and edge weights are associated with the co-location probability of populations of the counties. The analysis examines the synchronicity and time lag between travel reduction and pandemic growth trajectory to evaluate the efficacy of social distancing in ceasing the population co-location probabilities, and subsequently the growth in weekly new cases across counties. The results show that the mitigation effects of co-location reduction appear in the growth of weekly new confirmed cases with one week of delay. The analysis categorizes counties based on the number of confirmed COVID-19 cases and examines co-location patterns within and across groups. Significant segregation is found among different county groups. The results suggest that within-group co-location probabilities (e.g., co-location probabilities among counties with high numbers of cases) remain stable, and social distancing policies primarily resulted in reduced cross-group co-location probabilities (due to travel reduction from counties with large number of cases to counties with low numbers of cases). These findings could have important practical implications for local governments to inform their intervention measures for monitoring and reducing the spread of COVID-19, as well as for adoption in future pandemics. Public policy, economic forecasting, and epidemic modeling need to account for population co-location patterns in evaluating transmission risk of COVID-19 across counties.more » « less
-
Since the pandemic of COVID-19 began in January 2020, the world has witnessed drastic social-economic changes. To harness the virus spread, several studies have been done to study contributing factors that are pertinent to COVID-19 transmission risks. However, little has been done to investigate how human activities on the spatial network are correlated to the virus transmission and spread. This paper performs a statistical analysis to examine interrelationships between spatial network characteristics and cumulative cases of COVID-19 in US counties. Specifically, both county-level transportation profiles (e.g., the total number of commute workers, route miles of freight railroad) and road network characteristics of US counties are considered. Then, the lasso regression model is utilized to identify a sparse set of significant variables that are sensitive to the response variable of COVID-19 cases. Finally, the fixed-effect model is built to capture the relationship between the selected set of predictors and the response variable. This work helps identify and determine salient features from spatial network characteristics and transportation profiles, thereby improving the understanding of COVID-19 spread dynamics. These significant variables can also be utilized to develop simulation models for the prediction of real-time positions of virus spread and the optimization of intervention strategies.more » « less
-
Meal delivery has become increasingly popular in past years and of great importance in past months during the COVID-19 pandemic. Sustaining such services depends on maintaining provider profitability and reduced cost to consumers while continuing to support autonomy and independence for customers, restaurants, and delivery drivers (here crowdsourced drivers). This paper investigates the possible enactment of curbside regulations in the U.S. that limit the number of drivers simultaneously waiting at restaurants to pick up meals for delivery on both public safety and delivery efficiency. Curbside regulations would aim to increase safety by enabling social distancing between delivery personnel at pickup locations and have a secondary benefit of improving local traffic flows, which are sometimes impeded in busier, urban locations. Curbside space limits are studied in relation to their impacts on consumer-related performance measures: freshness of the food on delivery and click-to-door time. This investigation is enabled through a proposed hybrid discrete-event and time-advanced simulation platform that replicates meal delivery service calls and pickup and delivery operations across a region built on data from a leading meal delivery company. Embedded within the simulation is an integer program that optimally assigns orders to drivers in a dynamically changing environment. Order assignments are constrained by imposed curbside capacity limits at the restaurants, and potential efficiencies and curbside violation reductions from bundling orders are assessed. Results of analyses from numerical experiments provide insights to state and local communities in designing curbside restrictions that reduce curbside crowding yet enable delivery companies to retain their profitability.more » « less
-
null (Ed.)Background Population mobility is closely associated with COVID-19 transmission, and it could be used as a proximal indicator to predict future outbreaks, which could inform proactive nonpharmaceutical interventions for disease control. South Carolina is one of the US states that reopened early, following which it experienced a sharp increase in COVID-19 cases. Objective The aims of this study are to examine the spatial-temporal relationship between population mobility and COVID-19 outbreaks and use population mobility data to predict daily new cases at both the state and county level in South Carolina. Methods This longitudinal study used disease surveillance data and Twitter-based population mobility data from March 6 to November 11, 2020, in South Carolina and its five counties with the largest number of cumulative confirmed COVID-19 cases. Population mobility was assessed based on the number of Twitter users with a travel distance greater than 0.5 miles. A Poisson count time series model was employed for COVID-19 forecasting. Results Population mobility was positively associated with state-level daily COVID-19 incidence as well as incidence in the top five counties (ie, Charleston, Greenville, Horry, Spartanburg, and Richland). At the state level, the final model with a time window within the last 7 days had the smallest prediction error, and the prediction accuracy was as high as 98.7%, 90.9%, and 81.6% for the next 3, 7, and 14 days, respectively. Among Charleston, Greenville, Horry, Spartanburg, and Richland counties, the best predictive models were established based on their observations in the last 9, 14, 28, 20, and 9 days, respectively. The 14-day prediction accuracy ranged from 60.3%-74.5%. Conclusions Using Twitter-based population mobility data could provide acceptable predictions of COVID-19 daily new cases at both the state and county level in South Carolina. Population mobility measured via social media data could inform proactive measures and resource relocations to curb disease outbreaks and their negative influences.more » « less
An official website of the United States government

