This account describes the development of organosulfonyloxy-substituted iodine(III) and iodine(V) benziodoxole derived reagents, which are thermally stable compounds with useful reactivity patterns. Iodine(III) benziodoxoles and pseudobenziodoxoles are powerful electrophiles and mild oxidants toward various unsaturated compounds. In particular, pseudocyclic benziodoxole-derived triflate (IBA-OTf) is an efficient reagent for oxidative heteroannulation reactions. Aldoximes react with nitriles in the presence of IBA-OTf at room temperature to give 1,2,4-oxadiazoles in high yields. Moreover, IBA-triflate is used as a catalyst in oxidative heteroannulations with m-chloroperoxybenzoic acid as the terminal oxidant. The iodine(V) benziodoxole derived tosylates, DMP-tosylate and IBX-tosylate, are superior oxidants for the oxidation of structurally diverse, synthetically useful alcohols, utilized as key precursors in the total syntheses of polyketide antibiotics and terpenes. And finally, the most powerful hypervalent iodine(V) oxidant, 2-iodoxybenzoic acid ditriflate (IBX·2HOTf), is prepared by treatment of IBX with trifluoromethanesulfonic acid. According to the X-ray data, the I–OTf bonds in IBX-ditriflate have ionic character, leading to the high reactivity of this reagent in various oxidations. In particular, IBX-ditriflate can oxidize polyfluorinated primary alcohols, which are generally extremely resistant to oxidation. 1 Introduction 2 Iodine(III) Benziodoxole Based Organosulfonates 3 Pseudocyclic Iodine(III) Benziodoxole Triflate (IBA-triflate) 4 Pseudocyclic Iodine(III) Benziodoxole Tosylates 5 Iodine(V) Benziodoxole Derived Tosylates 6 Iodine(V) Benziodoxole Derived Triflate (IBX-ditriflate) 7 Conclusions
more »
« less
Convenient Synthesis of Benziodazolone: New Reagents for Direct Esterification of Alcohols and Amidation of Amines
Hypervalent iodine heterocycles represent one of the important classes of hypervalent iodine reagents with many applications in organic synthesis. This paper reports a simple and convenient synthesis of benziodazolones by the reaction of readily available iodobenzamides with m-chloroperoxybenzoic acid in acetonitrile at room temperature. The structure of one of these new iodine heterocycles was confirmed by X-ray analysis. In combination with PPh3 and pyridine, these benziodazolones can smoothly react with alcohols or amines to produce the corresponding esters or amides of 3-chlorobenzoic acid, respectively. It was found that the novel benziodazolone reagent reacts more efficiently than the analogous benziodoxolone reagent in this esterification.
more »
« less
- Award ID(s):
- 1759798
- PAR ID:
- 10320304
- Date Published:
- Journal Name:
- Molecules
- Volume:
- 26
- Issue:
- 23
- ISSN:
- 1420-3049
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Organohypervalent iodine reagents are widely used for the preparation of various oxazolines, oxazoles, isoxazolines, and isoxazoles. In the formation of these heterocyclic compounds, hypervalent iodine species can serve as the activating reagents for various substrates, as well as the heteroatom donor reagents. In recent research, both chemical and electrochemical approaches toward generation of hypervalent iodine species have been utilized. The in situ generated active species can react with appropriate substrates to give the corresponding heterocyclic products. In this short review, we summarize the hypervalent-iodine-mediated preparation of oxazolines, oxazoles, isoxazolines, and isoxazoles starting from various substrates. 1 Introduction 2 Synthesis of Oxazolines 3 Synthesis of Oxazoles 4 Synthesis of Isoxazolines 5 Synthesis of Isoxazoles 6 Conclusionmore » « less
-
Muniz, K.; Ishihara, K. (Ed.)Hypervalent iodine compounds are a widely used class of metal-free oxidants that find application in organic synthesis. Due to the homology between the reactivity of hypervalent iodine and many transition metals ¾ oxidative addition, ligand exchange, and reductive elimination can be facile for both ¾ hypervalent iodine species find application in a variety of synthetically important organic transformations. Major limitations of these reagents include the frequent need for (super)stoichiometric loading and the intrinsically poor atom economy that results from the generation of stoichiometric quantities of iodoarene byproducts. In addition, hypervalent iodine reagents are often synthesized using metal-based terminal oxidants, which compound the resulting waste stream. Recently, substantial progress has been made to address these limitations. Here, we discuss progress towards sustainable synthetic methods for the preparation of hypervalent iodine compounds and application of those methods in the context of hypervalent iodine catalysis. The discussion is organized according to the active oxygen content, and thus atom economy, of the terminal oxidant employed. Hypervalent iodine electrochemistry and the development of recyclable iodoarenes are also discussed.more » « less
-
This study explores the dynamic self-assembly and disassembly of hypervalent iodine-based macrocycles (HIMs) guided by secondary bonding interactions. The reversible disassembly and reassembly of HIMs are facilitated through anion binding via the addition of tetrabutylammonium (TBA) salts or removal of the anion by the addition of silver nitrate. The association constants for HIM monomers with TBA(Cl) and TBA(Br) are calculated and show a correlation with the strength of the iodine–anion bond. A unique tetracoordinate hypervalent iodine-based compound was identified as the disassembled monomer. Last, the study reveals the dynamic bonding nature of these macrocycles in solution, allowing for rearrangement and participation in dynamic bonding chemistry.more » « less
-
Abstract Hypervalent iodine (HVI) reagents have gained much attention as versatile oxidants because of their low toxicity, mild reactivity, easy handling, and availability. Despite their unique reactivity and other advantageous properties, stoichiometric HVI reagents are associated with the disadvantage of generating non-recyclable iodoarenes as waste/co-products. To overcome these drawbacks, the syntheses and utilization of various recyclable hypervalent iodine reagents have been established in recent years. This review summarizes the development of various recyclable non-polymeric, polymer-supported, ionic-liquid-supported, and metal–organic framework (MOF)-hybridized HVI reagents. 1 Introduction 2 Polymer-Supported Hypervalent Iodine Reagents 2.1 Polymer-Supported Hypervalent Iodine(III) Reagents 2.2 Polymer-Supported Hypervalent Iodine(V) Reagents 3 Non-Polymeric Recyclable Hypervalent Iodine Reagents 3.1 Non-Polymeric Recyclable Hypervalent Iodine(III) Reagents 3.2 Recyclable Non-Polymeric Hypervalent Iodine(V) Reagents 3.3 Fluorous Hypervalent Iodine Reagents 4 Ionic-Liquid/Ion-Supported Hypervalent Iodine Reagents 5 Metal–Organic Framework (MOF)-Hybridized Hypervalent Iodine Reagents 6 Conclusionmore » « less
An official website of the United States government

