A series of valine functionalized supramolecular hypervalent iodine macrocycles (HIMs) with enlarged aromatic cores, including naphthalene and anthraquinone, have been synthesized. Single crystal analysis shows the macrocycles consist of a slightly distorted cyclic planner interior with three carbonyl oxygens from the amino acid residues facing towards the center of the macrocycle and all three alkyl groups above one plane. Owing to the enlarged aromatic core, the naphthalene-based HIMs were successfully co-crystallized with Buckminsterfullerene (C60) into a long-range columnar supramolecular structure. The assembled architecture displays a long-range pattern between HIM and C60 in a 2 : 3 ratio, respectively. Disassembly of the HIMs can be accomplished by adding anions of tetrabutylammonium (TBA) salts that selectively bind with the electron deficient iodine center in HIM systems. A comparative study of the associations constants and the binding energies for different aromatic-based HIMs with TBA(Cl) and TBA(Br) is presented.
more »
« less
Assembly and Disassembly of Supramolecular Hypervalent Iodine Macrocycles via Anion Coordination
This study explores the dynamic self-assembly and disassembly of hypervalent iodine-based macrocycles (HIMs) guided by secondary bonding interactions. The reversible disassembly and reassembly of HIMs are facilitated through anion binding via the addition of tetrabutylammonium (TBA) salts or removal of the anion by the addition of silver nitrate. The association constants for HIM monomers with TBA(Cl) and TBA(Br) are calculated and show a correlation with the strength of the iodine–anion bond. A unique tetracoordinate hypervalent iodine-based compound was identified as the disassembled monomer. Last, the study reveals the dynamic bonding nature of these macrocycles in solution, allowing for rearrangement and participation in dynamic bonding chemistry.
more »
« less
- Award ID(s):
- 2003654
- PAR ID:
- 10553009
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- The Journal of Organic Chemistry
- Volume:
- 89
- Issue:
- 11
- ISSN:
- 0022-3263
- Page Range / eLocation ID:
- 7437 to 7445
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Muniz, K.; Ishihara, K. (Ed.)Hypervalent iodine compounds are a widely used class of metal-free oxidants that find application in organic synthesis. Due to the homology between the reactivity of hypervalent iodine and many transition metals ¾ oxidative addition, ligand exchange, and reductive elimination can be facile for both ¾ hypervalent iodine species find application in a variety of synthetically important organic transformations. Major limitations of these reagents include the frequent need for (super)stoichiometric loading and the intrinsically poor atom economy that results from the generation of stoichiometric quantities of iodoarene byproducts. In addition, hypervalent iodine reagents are often synthesized using metal-based terminal oxidants, which compound the resulting waste stream. Recently, substantial progress has been made to address these limitations. Here, we discuss progress towards sustainable synthetic methods for the preparation of hypervalent iodine compounds and application of those methods in the context of hypervalent iodine catalysis. The discussion is organized according to the active oxygen content, and thus atom economy, of the terminal oxidant employed. Hypervalent iodine electrochemistry and the development of recyclable iodoarenes are also discussed.more » « less
-
Abstract Hypervalent iodine (HVI) reagents have gained much attention as versatile oxidants because of their low toxicity, mild reactivity, easy handling, and availability. Despite their unique reactivity and other advantageous properties, stoichiometric HVI reagents are associated with the disadvantage of generating non-recyclable iodoarenes as waste/co-products. To overcome these drawbacks, the syntheses and utilization of various recyclable hypervalent iodine reagents have been established in recent years. This review summarizes the development of various recyclable non-polymeric, polymer-supported, ionic-liquid-supported, and metal–organic framework (MOF)-hybridized HVI reagents. 1 Introduction 2 Polymer-Supported Hypervalent Iodine Reagents 2.1 Polymer-Supported Hypervalent Iodine(III) Reagents 2.2 Polymer-Supported Hypervalent Iodine(V) Reagents 3 Non-Polymeric Recyclable Hypervalent Iodine Reagents 3.1 Non-Polymeric Recyclable Hypervalent Iodine(III) Reagents 3.2 Recyclable Non-Polymeric Hypervalent Iodine(V) Reagents 3.3 Fluorous Hypervalent Iodine Reagents 4 Ionic-Liquid/Ion-Supported Hypervalent Iodine Reagents 5 Metal–Organic Framework (MOF)-Hybridized Hypervalent Iodine Reagents 6 Conclusionmore » « less
-
Abstract Hypervalent iodine compounds have found broad application in modern organic chemistry as reagents and catalysts. Cyclic hypervalent iodine reagents based on the benziodoxole heterocyclic system have higher stability compared to their acyclic analogues, which makes possible the preparation and safe handling of the reagents with special ligands such as azido, cyano, and trifluoromethyl groups. Numerous iodine‐substituted benziodoxole derivatives have been prepared and utilized as reagents for transfer of the substituent on hypervalent iodine to organic substrate. Reactions of these reagents with organic substrates can be performed under metal‐free conditions, in the presence of transition metal catalysts, or using photocatalysts under photoirradiation conditions. In this review, we focus on the most recent synthetic applications of cyclic hypervalent iodine(III) reagents with the following ligands: N3, NHR, CN, CF3, SCF3, OR, OAc, ONO2, and C(=N2)CO2R. The review covers literature published mainly in the last 5 years.more » « less
-
Abstract Organic azides have found wide application in various fields of science and technology. This review summarizes recently developed approaches to the direct, one‐step synthesis of diverse organic azides utilizing hypervalent iodine reagents. The first part of review deals with the azidation using unstable azidoiodinanes generatedin situfrom common hypervalent iodine reagents (such as diacetoxyiodobenzene or iodosylbenzene) and a source of azide anion (TMSN3or NaN3). The second part of review is dedicated to the application of stable azidobenziodoxoles as useful azidating reagents that allow selective direct azidation of C−H bonds or double carbon‐carbon bonds under mild reaction conditions. The use of azidobenziodoxoles eliminates the main disadvantages of the traditional approaches to organic azides, such as the need in pre‐functionalization of organic substrates and harsh reaction conditions. Synthetic application of azidobenziodoxoles made possible direct selective azidation of a plethora of organic substrates including complex molecules at the late synthetic stage.more » « less
An official website of the United States government

