skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Salinity has little effect on photosynthetic and respiratory responses to seasonal temperature changes in black mangrove ( Avicennia germinans ) seedlings
Abstract Temperature and salinity are important regulators of mangrove range limits and productivity, but the physiological responses of mangroves to the interactive effects of temperature and salinity remain uncertain. We tested the hypothesis that salinity alters photosynthetic responses to seasonal changes in temperature and vapor pressure deficit (D), as well as thermal acclimation _of leaf respiration in black mangrove (Avicennia germinans). To test this hypothesis, we grew seedlings of A. germinans in an outdoor experiment for ~ 12 months under four treatments spanning 0 to 55 ppt porewater salinity. We repeatedly measured seedling growth and in situ rates of leaf net photosynthesis (Asat) and stomatal conductance to water vapor (gs) at prevailing leaf temperatures, along with estimated rates of Rubisco carboxylation (Vcmax) and electron transport for RuBP regeneration (Jmax), and measured rates of leaf respiration at 25 °C (Rarea25). We developed empirical models describing the seasonal response of leaf gas exchange and photosynthetic capacity to leaf temperature and D, and the response of Rarea25 to changes in mean daily air temperature. We tested the effect of salinity on model parameters. Over time, salinity had weak or inconsistent effects on Asat, gs and Rarea25. Salinity also had little effect on the biochemical parameters of photosynthesis (Vcmax, Jmax) and individual measurements of Asat, gs, Vcmax and Jmax showed a similar response to seasonal changes in temperature and D across all salinity treatments. Individual measurements of Rarea25 showed a similar inverse relationship with mean daily air temperature across all salinity treatments. We conclude that photosynthetic responses to seasonal changes in temperature and D, as well as seasonal temperature acclimation of leaf R, are largely consistent across a range of salinities in A. germinans. These results might simplify predictions of photosynthetic and respiratory responses to temperature in young mangroves.  more » « less
Award ID(s):
1852488
PAR ID:
10320363
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Editor(s):
Ball, Marilyn
Date Published:
Journal Name:
Tree Physiology
Volume:
41
Issue:
1
ISSN:
1758-4469
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nutrient enrichment is a major driver of environmental change in mangrove ecosystems. Yet, nutrient enrichment impacts on physiological processes that regulate CO2 and water fluxes between mangrove vegetation and the atmosphere remain unclear. We measured peak growing season photosynthesis (A) and respiration (R) in black mangrove (Avicennia germinans) leaves that had been subjected to long-term (8-year) nutrient enrichment (added N, added P, control) in north Florida. Previous results from this site indicated that Avicennia productivity was N-limited, but not P-limited. Thus, we expected that N addition would increase light saturated net photosynthesis at ambient CO2 (Anet), intrinsic water-use efficiency (iWUE), maximum rate of Rubisco carboxylation (Vcmax), and leaf dark respiration (R), while P addition would have little effect on any aspect of photosynthesis or respiration. We expected that increased photosynthesis and respiration would be most apparent immediately after N addition and in newly formed leaves. Indeed, Anet and Vcmax increased just after N addition in the N addition treatment; these increases were limited to leaves formed just after N addition. Nonetheless, over time, photosynthetic parameters and iWUE were similar across treatments. Interestingly, R measured at 25 °C increased with N addition; this effect was consistent across time points. P addition had little effect on R. Across treatments and time points, Vcmax,25 (Vcmax standardized to 25 °C) showed no relationship with R at 25 °C, but the maximum rate of electron transport for RuBP regeneration standardized to 25 °C (Jmax,25) increased with R at 25 °C. We conclude that N addition may have small, short-lived effects on photosynthetic processes, but sustained effects on leaf R in N-limited mangrove ecosystems. 
    more » « less
  2. Abstract Background and AimsTropical forests exchange more carbon dioxide (CO2) with the atmosphere than any other terrestrial biome. Yet, uncertainty in the projected carbon balance over the next century is roughly three times greater for the tropics than other for ecosystems. Our limited knowledge of tropical plant physiological responses, including photosynthetic, to climate change is a substantial source of uncertainty in our ability to forecast the global terrestrial carbon sink. MethodsWe used a meta-analytic approach, focusing on tropical photosynthetic temperature responses, to address this knowledge gap. Our dataset, gleaned from 18 independent studies, included leaf-level light-saturated photosynthetic (Asat) temperature responses from 108 woody species, with additional temperature parameters (35 species) and rates (250 species) of both maximum rates of electron transport (Jmax) and Rubisco carboxylation (Vcmax). We investigated how these parameters responded to mean annual temperature (MAT), temperature variability, aridity and elevation, as well as also how responses differed among successional strategy, leaf habit and light environment. Key ResultsOptimum temperatures for Asat (ToptA) and Jmax (ToptJ) increased with MAT but not for Vcmax (ToptV). Although photosynthetic rates were higher for ‘light’ than ‘shaded’ leaves, light conditions did not generate differences in temperature response parameters. ToptA did not differ with successional strategy, but early successional species had ~4 °C wider thermal niches than mid/late species. Semi-deciduous species had ~1 °C higher ToptA than broadleaf evergreen species. Most global modelling efforts consider all tropical forests as a single ‘broadleaf evergreen’ functional type, but our data show that tropical species with different leaf habits display distinct temperature responses that should be included in modelling efforts. ConclusionsThis novel research will inform modelling efforts to quantify tropical ecosystem carbon cycling and provide more accurate representations of how these key ecosystems will respond to altered temperature patterns in the face of climate warming. 
    more » « less
  3. Niinemets, Ülo (Ed.)
    Abstract High latitude forests cope with considerable variation in moisture and temperature at multiple temporal scales. To assess how their photosynthetic physiology responds to short- and long-term temperature variation, we measured photosynthetic capacity for four tree species growing in an open-air experiment in the boreal-temperate ecotone `Boreal Forest Warming at an Ecotone in Danger' (B4WarmED). The experiment factorially manipulated temperature above- and below-ground (ambient, +3.2 °C) and summer rainfall (ambient, 40% removal). We measured A/Ci curves at 18, 25 and 32 °C for individuals of two boreal (Pinus banksiana Lamb., Betula papyrifera Marsh.) and two temperate species (Pinus strobus L., Acer rubrum L.) experiencing the long-term warming and/or reduced-rainfall conditions induced by our experimental treatments. We calculated the apparent photosynthetic capacity descriptors VCmax,Ci and Jmax,Ci and their ratio for each measurement temperate. We hypothesized that (i) VCmax,Ci and Jmax,Ci would be down-regulated in plants experiencing longer term (e.g., weeks to months) warming and reduced rainfall (i.e., have lower values at a given measurement temperature), as is sometimes found in the literature, and that (ii) plants growing at warmer temperatures or from warmer ranges would show greater sensitivity (steeper slope) to short-term (minutes to hours) temperature variation. Neither hypothesis was supported as a general trend across the four species, as there was not a significant main effect (across species) of either warming or rainfall reduction on VCmax,Ci and Jmax,Ci. All species markedly increased VCmax,Ci and Jmax,Ci (and decreased their ratio) with short-term increases in temperature (i.e., contrasting values at 18, 25 and 32 °C), and those responses were independent of long-term treatments and did not differ among species. The Jmax,Ci:VCmax,Ci ratio was, however, significantly lower across species in warmed and reduced rainfall treatments. Collectively, these results suggest that boreal trees possess considerable short-term plasticity that may allow homeostasis of VCmax,Ci and Jmax,Ci to a longer term temperature treatment. Our results also caution against extrapolating results obtained under controlled and markedly contrasting temperature treatments to responses of photosynthetic parameters to more modest temperature changes expected in the near-term with climate warming in field conditions. 
    more » « less
  4. Ball, Marilyn (Ed.)
    Abstract We investigated how mangrove-island micro-elevation (i.e., habitat: center vs edge) affects tree physiology in a scrub mangrove forest of the southeastern Everglades. We measured leaf gas exchange rates of scrub Rhizophora mangle L. trees monthly during 2019, hypothesizing that CO2 assimilation (Anet) and stomatal conductance (gsw) would decline with increasing water levels and salinity, expecting more considerable differences at mangrove-island edges than centers, where physiological stress is greatest. Water levels varied between 0 and 60 cm from the soil surface, rising during the wet season (May–October) relative to the dry season (November–April). Porewater salinity ranged from 15 to 30 p.p.t., being higher at mangrove-island edges than centers. Anet maximized at 15.1 μmol m−2 s−1, and gsw was typically <0.2 mol m−2 s−1, both of which were greater in the dry than the wet season and greater at island centers than edges, with seasonal variability being roughly equal to variation between habitats. After accounting for season and habitat, water level positively affected Anet in both seasons but did not affect gsw. Our findings suggest that inundation stress (i.e., water level) is the primary driver of variation in leaf gas exchange rates of scrub mangroves in the Florida Everglades, while also constraining Anet more than gsw. The interaction between inundation stress due to permanent flooding and habitat varies with season as physiological stress is alleviated at higher-elevation mangrove-island center habitats during the dry season. Freshwater inflows during the wet season increase water levels and inundation stress at higher-elevation mangrove-island centers, but also potentially alleviate salt and sulfide stress in soils. Thus, habitat heterogeneity leads to differences in nutrient and water acquisition and use between trees growing in island centers versus edges, creating distinct physiological controls on photosynthesis, which likely affect carbon flux dynamics of scrub mangroves in the Everglades. 
    more » « less
  5. Long, Steve. (Ed.)
    Switchgrass (Panicum virgatum L.) is a prominent bioenergy crop with robust resilience to environmental stresses. However, our knowledge regarding how precipitation changes affect switchgrass photosynthesis and its responses to light and CO2 remains limited. To address this knowledge gap, we conducted a field precipitation experiment with five different treatments, including -50%, -33%, 0%, +33%, and +50% of ambient precipitation. To determine the responses of leaf photosynthesis to CO2 concentration and light, we measured leaf net photosynthesis of switchgrass under different CO2 concentrations and light levels in 2020 and 2021 for each of the five precipitation treatments. We first evaluated four light and CO2 response models (i.e., rectangular hyperbola model, nonrectangular hyperbola model, exponential model, and the modified rectangular hyperbola model) using the measurements in the ambient precipitation treatment. Based on the fitting criteria, we selected the nonrectangular hyperbola model as the optimal model and applied it to all precipitation treatments, and estimated model parameters. Overall, the model fit field measurements well for the light and CO2 response curves. Precipitation change did not influence the maximum net photosynthetic rate (Pmax) but influenced other model parameters including quantum yield (α), convexity (θ), dark respiration (Rd), light compensation point (LCP), and saturated light point (LSP). Specifically, the mean Pmax of five precipitation treatments was 17.6 μmol CO2 m-2s-1, and the ambient treatment tended to have a higher Pmax. The +33% treatment had the highest α, and the ambient treatment had lower θ and LCP, higher Rd, and relatively lower LSP. Furthermore, precipitation significantly influenced all model parameters of CO2 response. The ambient treatment had the highest Pmax, largest α, and lowest θ, Rd, and CO2 compensation point LCP. Overall, this study improved our understanding of how switchgrass leaf photosynthesis responds to diverse environmental factors, providing valuable insights for accurately modeling switchgrass ecophysiology and productivity. 
    more » « less