skip to main content


Title: Salinity has little effect on photosynthetic and respiratory responses to seasonal temperature changes in black mangrove ( Avicennia germinans ) seedlings
Abstract Temperature and salinity are important regulators of mangrove range limits and productivity, but the physiological responses of mangroves to the interactive effects of temperature and salinity remain uncertain. We tested the hypothesis that salinity alters photosynthetic responses to seasonal changes in temperature and vapor pressure deficit (D), as well as thermal acclimation _of leaf respiration in black mangrove (Avicennia germinans). To test this hypothesis, we grew seedlings of A. germinans in an outdoor experiment for ~ 12 months under four treatments spanning 0 to 55 ppt porewater salinity. We repeatedly measured seedling growth and in situ rates of leaf net photosynthesis (Asat) and stomatal conductance to water vapor (gs) at prevailing leaf temperatures, along with estimated rates of Rubisco carboxylation (Vcmax) and electron transport for RuBP regeneration (Jmax), and measured rates of leaf respiration at 25 °C (Rarea25). We developed empirical models describing the seasonal response of leaf gas exchange and photosynthetic capacity to leaf temperature and D, and the response of Rarea25 to changes in mean daily air temperature. We tested the effect of salinity on model parameters. Over time, salinity had weak or inconsistent effects on Asat, gs and Rarea25. Salinity also had little effect on the biochemical parameters of photosynthesis (Vcmax, Jmax) and individual measurements of Asat, gs, Vcmax and Jmax showed a similar response to seasonal changes in temperature and D across all salinity treatments. Individual measurements of Rarea25 showed a similar inverse relationship with mean daily air temperature across all salinity treatments. We conclude that photosynthetic responses to seasonal changes in temperature and D, as well as seasonal temperature acclimation of leaf R, are largely consistent across a range of salinities in A. germinans. These results might simplify predictions of photosynthetic and respiratory responses to temperature in young mangroves.  more » « less
Award ID(s):
1852488
NSF-PAR ID:
10320363
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Editor(s):
Ball, Marilyn
Date Published:
Journal Name:
Tree Physiology
Volume:
41
Issue:
1
ISSN:
1758-4469
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nutrient enrichment is a major driver of environmental change in mangrove ecosystems. Yet, nutrient enrichment impacts on physiological processes that regulate CO2 and water fluxes between mangrove vegetation and the atmosphere remain unclear. We measured peak growing season photosynthesis (A) and respiration (R) in black mangrove (Avicennia germinans) leaves that had been subjected to long-term (8-year) nutrient enrichment (added N, added P, control) in north Florida. Previous results from this site indicated that Avicennia productivity was N-limited, but not P-limited. Thus, we expected that N addition would increase light saturated net photosynthesis at ambient CO2 (Anet), intrinsic water-use efficiency (iWUE), maximum rate of Rubisco carboxylation (Vcmax), and leaf dark respiration (R), while P addition would have little effect on any aspect of photosynthesis or respiration. We expected that increased photosynthesis and respiration would be most apparent immediately after N addition and in newly formed leaves. Indeed, Anet and Vcmax increased just after N addition in the N addition treatment; these increases were limited to leaves formed just after N addition. Nonetheless, over time, photosynthetic parameters and iWUE were similar across treatments. Interestingly, R measured at 25 °C increased with N addition; this effect was consistent across time points. P addition had little effect on R. Across treatments and time points, Vcmax,25 (Vcmax standardized to 25 °C) showed no relationship with R at 25 °C, but the maximum rate of electron transport for RuBP regeneration standardized to 25 °C (Jmax,25) increased with R at 25 °C. We conclude that N addition may have small, short-lived effects on photosynthetic processes, but sustained effects on leaf R in N-limited mangrove ecosystems. 
    more » « less
  2. Summary

    Leaf dark respiration (Rd) acclimates to environmental changes. However, the magnitude, controls and time scales of acclimation remain unclear and are inconsistently treated in ecosystem models.

    We hypothesized thatRdand Rubisco carboxylation capacity (Vcmax) at 25°C (Rd,25,Vcmax,25) are coordinated so thatRd,25variations supportVcmax,25at a level allowing full light use, withVcmax,25reflecting daytime conditions (for photosynthesis), andRd,25/Vcmax,25reflecting night‐time conditions (for starch degradation and sucrose export). We tested this hypothesis temporally using a 5‐yr warming experiment, and spatially using an extensive field‐measurement data set. We compared the results to three published alternatives:Rd,25declines linearly with daily average prior temperature;Rdat average prior night temperatures tends towards a constant value; andRd,25/Vcmax,25is constant.

    Our hypothesis accounted for more variation in observedRd,25over time (R2 = 0.74) and space (R2 = 0.68) than the alternatives. Night‐time temperature dominated the seasonal time‐course ofRd, with an apparent response time scale ofc.2 wk.Vcmaxdominated the spatial patterns.

    Our acclimation hypothesis results in a smaller increase in globalRdin response to rising CO2and warming than is projected by the two of three alternative hypotheses, and by current models.

     
    more » « less
  3. Niinemets, Ülo (Ed.)
    Abstract High latitude forests cope with considerable variation in moisture and temperature at multiple temporal scales. To assess how their photosynthetic physiology responds to short- and long-term temperature variation, we measured photosynthetic capacity for four tree species growing in an open-air experiment in the boreal-temperate ecotone `Boreal Forest Warming at an Ecotone in Danger' (B4WarmED). The experiment factorially manipulated temperature above- and below-ground (ambient, +3.2 °C) and summer rainfall (ambient, 40% removal). We measured A/Ci curves at 18, 25 and 32 °C for individuals of two boreal (Pinus banksiana Lamb., Betula papyrifera Marsh.) and two temperate species (Pinus strobus L., Acer rubrum L.) experiencing the long-term warming and/or reduced-rainfall conditions induced by our experimental treatments. We calculated the apparent photosynthetic capacity descriptors VCmax,Ci and Jmax,Ci and their ratio for each measurement temperate. We hypothesized that (i) VCmax,Ci and Jmax,Ci would be down-regulated in plants experiencing longer term (e.g., weeks to months) warming and reduced rainfall (i.e., have lower values at a given measurement temperature), as is sometimes found in the literature, and that (ii) plants growing at warmer temperatures or from warmer ranges would show greater sensitivity (steeper slope) to short-term (minutes to hours) temperature variation. Neither hypothesis was supported as a general trend across the four species, as there was not a significant main effect (across species) of either warming or rainfall reduction on VCmax,Ci and Jmax,Ci. All species markedly increased VCmax,Ci and Jmax,Ci (and decreased their ratio) with short-term increases in temperature (i.e., contrasting values at 18, 25 and 32 °C), and those responses were independent of long-term treatments and did not differ among species. The Jmax,Ci:VCmax,Ci ratio was, however, significantly lower across species in warmed and reduced rainfall treatments. Collectively, these results suggest that boreal trees possess considerable short-term plasticity that may allow homeostasis of VCmax,Ci and Jmax,Ci to a longer term temperature treatment. Our results also caution against extrapolating results obtained under controlled and markedly contrasting temperature treatments to responses of photosynthetic parameters to more modest temperature changes expected in the near-term with climate warming in field conditions. 
    more » « less
  4. Ball, Marilyn (Ed.)
    Abstract We investigated how mangrove-island micro-elevation (i.e., habitat: center vs edge) affects tree physiology in a scrub mangrove forest of the southeastern Everglades. We measured leaf gas exchange rates of scrub Rhizophora mangle L. trees monthly during 2019, hypothesizing that CO2 assimilation (Anet) and stomatal conductance (gsw) would decline with increasing water levels and salinity, expecting more considerable differences at mangrove-island edges than centers, where physiological stress is greatest. Water levels varied between 0 and 60 cm from the soil surface, rising during the wet season (May–October) relative to the dry season (November–April). Porewater salinity ranged from 15 to 30 p.p.t., being higher at mangrove-island edges than centers. Anet maximized at 15.1 μmol m−2 s−1, and gsw was typically <0.2 mol m−2 s−1, both of which were greater in the dry than the wet season and greater at island centers than edges, with seasonal variability being roughly equal to variation between habitats. After accounting for season and habitat, water level positively affected Anet in both seasons but did not affect gsw. Our findings suggest that inundation stress (i.e., water level) is the primary driver of variation in leaf gas exchange rates of scrub mangroves in the Florida Everglades, while also constraining Anet more than gsw. The interaction between inundation stress due to permanent flooding and habitat varies with season as physiological stress is alleviated at higher-elevation mangrove-island center habitats during the dry season. Freshwater inflows during the wet season increase water levels and inundation stress at higher-elevation mangrove-island centers, but also potentially alleviate salt and sulfide stress in soils. Thus, habitat heterogeneity leads to differences in nutrient and water acquisition and use between trees growing in island centers versus edges, creating distinct physiological controls on photosynthesis, which likely affect carbon flux dynamics of scrub mangroves in the Everglades. 
    more » « less
  5. Abstract

    Uncertainty about long‐term leaf‐level responses to atmospheric CO2rise is a major knowledge gap that exists because of limited empirical data. Thus, it remains unclear how responses of leaf gas exchange to elevated CO2(eCO2) vary among plant species and functional groups, or across different levels of nutrient supply, and whether they persist over time for long‐lived perennials. Here, we report the effects of eCO2on rates of net photosynthesis and stomatal conductance in 14 perennial grassland species from four functional groups over two decades in a Minnesota Free‐Air CO2Enrichment experiment, BioCON. Monocultures of species belonging to C3grasses, C4grasses, forbs, and legumes were exposed to two levels of CO2and nitrogen supply in factorial combinations over 21 years. eCO2increased photosynthesis by 12.9% on average in C3species, substantially less than model predictions of instantaneous responses based on physiological theory and results of other studies, even those spanning multiple years. Acclimation of photosynthesis to eCO2was observed beginning in the first year and did not strengthen through time. Yet, contrary to expectations, the response of photosynthesis to eCO2was not enhanced by increased nitrogen supply. Differences in responses among herbaceous plant functional groups were modest, with legumes responding the most and C4grasses the least as expected, but did not further diverge over time. Leaf‐level water‐use efficiency increased by 50% under eCO2primarily because of reduced stomatal conductance. Our results imply that enhanced nitrogen supply will not necessarily diminish photosynthetic acclimation to eCO2in nitrogen‐limited systems, and that significant and consistent declines in stomatal conductance and increases in water‐use efficiency under eCO2may allow plants to better withstand drought.

     
    more » « less