skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Water levels primarily drive variation in photosynthesis and nutrient use of scrub Red Mangroves in the southeastern Florida Everglades
Abstract We investigated how mangrove-island micro-elevation (i.e., habitat: center vs edge) affects tree physiology in a scrub mangrove forest of the southeastern Everglades. We measured leaf gas exchange rates of scrub Rhizophora mangle L. trees monthly during 2019, hypothesizing that CO2 assimilation (Anet) and stomatal conductance (gsw) would decline with increasing water levels and salinity, expecting more considerable differences at mangrove-island edges than centers, where physiological stress is greatest. Water levels varied between 0 and 60 cm from the soil surface, rising during the wet season (May–October) relative to the dry season (November–April). Porewater salinity ranged from 15 to 30 p.p.t., being higher at mangrove-island edges than centers. Anet maximized at 15.1 μmol m−2 s−1, and gsw was typically <0.2 mol m−2 s−1, both of which were greater in the dry than the wet season and greater at island centers than edges, with seasonal variability being roughly equal to variation between habitats. After accounting for season and habitat, water level positively affected Anet in both seasons but did not affect gsw. Our findings suggest that inundation stress (i.e., water level) is the primary driver of variation in leaf gas exchange rates of scrub mangroves in the Florida Everglades, while also constraining Anet more than gsw. The interaction between inundation stress due to permanent flooding and habitat varies with season as physiological stress is alleviated at higher-elevation mangrove-island center habitats during the dry season. Freshwater inflows during the wet season increase water levels and inundation stress at higher-elevation mangrove-island centers, but also potentially alleviate salt and sulfide stress in soils. Thus, habitat heterogeneity leads to differences in nutrient and water acquisition and use between trees growing in island centers versus edges, creating distinct physiological controls on photosynthesis, which likely affect carbon flux dynamics of scrub mangroves in the Everglades.  more » « less
Award ID(s):
2025954 1832229
PAR ID:
10381561
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Ball, Marilyn
Date Published:
Journal Name:
Tree Physiology
Volume:
42
Issue:
4
ISSN:
1758-4469
Page Range / eLocation ID:
797 to 814
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Coastal ecosystems are rapidly shifting due to changes in hydrologic presses (e.g., sea‐level rise) and pulses (e.g., seasonal hydrology, disturbances, and restoration of degraded wetlands). Changing water levels and sources are master variables in coastal wetlands that can alter carbon concentrations, sources, processing, and export. Yet, how long‐term increases in water levels from marine and freshwater sources influence dissolved organic carbon (DOC) concentrations and dissolved organic matter (DOM) composition is uncertain. We quantified how long‐term changes in water levels are affecting DOC concentration (2001–2021) and DOM composition (2011–2021) differently across the Florida Everglades. DOC concentrations decreased with high water depths in peat marshes and increased with high water levels in marl marshes and across mangroves, and these relationships were reproduced in freshwater peat marshes and shrub mangroves. In the highly productive riverine mangroves, cross‐wavelet analysis highlighted variable relationships between DOC and water level were largely modulated by hurricane disturbances. By comparing relationships between water level and DOC concentrations with carbon sources from DOM fluorescence indices, we found that changing water sources between the dry and wet season shift DOM from algal to detrital sources in freshwater marshes, from detrital marsh to detrital mangrove sources in the brackish water ecotone, and from detrital mangrove to algal marine sources in downstream mangroves. As climate change and anthropogenic drivers continue to alter water levels in coastal wetlands, integrating spatial and temporal measurements of DOC concentrations and DOM compositions is essential to better constrain the transformation and export of carbon across these coastal ecosystems. 
    more » « less
  2. Datasets include hydrology (water level and salinity), net ecosystem exchange of CO2, photosynthetically active radiation (PAR), and air temperature for a freshwater marl prairie, brackish marsh ecotone, and saline scrub mangrove forest. Data were derived from multiple sources, including two sites from the South Florida Water Management District (SFWMD) DBhydro web database, two sites from the Florida Coastal Everglades Long Term Ecological Research (FCE-LTER) program and three AmeriFlux sites in the Southeastern Everglades region. Ameriflux sites were co-located with FCE-LTER sites. To understand the effects of sea level rise and freshwater management on landscape carbon exchange (C), we measured the net ecosystem exchange of CO2 (NEE) between subtropical wetland ecosystems and the atmosphere along a dynamic salinity gradient. Ecosystems were representative of freshwater marl prairies, brackish marsh ecotones, and saline scrub mangrove forests. In the southeastern Everglades, the magnitude of environmental change was greatest along the coast, where mangrove scrub forests exhibited a greater capacity to maintain CO2 uptake with changing conditions. 
    more » « less
  3. Mangrove forests play a critical role in coastal ecosystems by buffering shorelines against the destructive forces of storms and storm surges, but in doing so, they often endure significant structural damage, including defoliation, tree snapping, and branch loss. Using decade-long remote sensing Landsat 8 data, we calculated the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Moisture Index (NDMI) to assess patterns and trends within the decade-long time series for each index in mangrove forests of southwestern Florida Everglades. Before calculating NDVI and NDMI, we cloud-filtered and calculated the monthly spectral means of the study region from March 2013 to March 2023. Using both NDVI and NDMI, we found seasonal variations in the value of both indices, in which the value increased during the wet season and decreased during the dry season of the Everglades. We also detected the impact of Hurricane Irma on mangroves in 2017 due to a sudden drop in the indices’ values right after the storm. The time series showed a slow recovery of indices values compared to pre-storm values. Using an exponential recovery model, we calculated that most mangrove areas recovered within two to four years. However, some small mangrove areas show no recovery, which we attribute to saltwater ponding and areas without freshwater flow and hydrological connectivity. 
    more » « less
  4. Mangroves have evolved at least 27 times across ~20 plant families to survive coastal. To environments characterized by high salinity, inundation, intense light, and strong winds survive these extreme conditions, mangroves exhibit a variety of physiological strategies to tolerate the low osmotic potentials associated with saltwater inundation. Because low osmotic potentials are counterbalanced by high turgor pressure, saltwater exposure exerts mechanical demands on cells. Analyzing 34 mangrove species and 33 closely related inland taxa from 17 plant families, we show that compared to their inland relatives, mangroves have unusually small leaf epidermal pavement cells and thicker cell walls, which together confer greater mechanical strength and tolerance to low osmotic potentials. However, mangroves do not exhibit smaller, more numerous stomata that enable higher photosynthetic rates , suggesting selection on biomechanical integrity rather than on gas exchange capacity. Notably, mangroves break the allometric scaling between the sizes of epidermal pavement cells and stomata typically seen in land plants, highlighting that strong selection in saline habitats can override genome size–mediated scaling rules. Phylogenetic comparative analyses revealed repeated convergent evolution of cell traits across independent transitions from inland to coastal habitats. These anatomical changes constitute a simple but effective adaptation to salt stress. Our findings underscore the role of biomechanics in driving convergent evolution of cell traits and suggest that manipulating cell size and wall properties could be a promising strategy to engineering salt-tolerant plants. 
    more » « less
  5. Coastal wetlands are globally important stores of carbon (C). However, accelerated sea-level rise (SLR), increased saltwater intrusion, and modified freshwater discharge can contribute to the collapse of peat marshes, converting coastal peatlands into open water. Applying results from multiple experiments from sawgrass (Cladium jamaicense)-dominated freshwater and brackish water marshes in the Florida Coastal Everglades, we developed a system-level mechanistic peat elevation model (EvPEM). We applied the model to simulate net ecosystem C balance (NECB) and peat elevation in response to elevated salinity under inundation and drought exposure. Using a mass C balance approach, we estimated net gain in C and corresponding export of aquatic fluxes ( ) in the freshwater marsh under ambient conditions (NECB = 1119 ± 229 gC m−2 year−1; FAQ = 317 ± 186 gC m−2 year−1). In contrast, the brackish water marsh exhibited substantial peat loss and aquatic C export with ambient (NECB = −366 ± 15 gC m−2 year−1; FAQ = 311 ± 30 gC m−2 year−1) and elevated salinity (NECB = −594 ± 94 gC m−2 year−1; FAQ = 729 ± 142 gC m−2 year−1) under extended exposed conditions. Further, mass balance suggests a considerable decline in soil C and corresponding elevation loss with elevated salinity and seasonal dry-down. Applying EvPEM, we developed critical marsh net primary productivity (NPP) thresholds as a function of salinity to simulate accumulating, steady-state, and collapsing peat elevations. The optimization showed that ~150–1070 gC m−2 year−1 NPP could support a stable peat elevation (elevation change ≈ SLR), with the corresponding salinity ranging from 1 to 20 ppt under increasing inundation levels. The C budgeting and modeling illustrate the impacts of saltwater intrusion, inundation, and seasonal dry-down and reduce uncertainties in understanding the fate of coastal peat wetlands with SLR and freshwater restoration. The modeling results provide management targets for hydrologic restoration based on the ecological conditions needed to reduce the vulnerability of the Everglades' peat marshes to collapse. The approach can be extended to other coastal peatlands to quantify C loss and improve understanding of the influence of the biological controls on wetland C storage changes for coastal management. 
    more » « less