- Award ID(s):
- 1852488
- Publication Date:
- NSF-PAR ID:
- 10320364
- Journal Name:
- New Phytologist
- Volume:
- 229
- Issue:
- 4
- ISSN:
- 0028-646X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Stomatal pore apertures are narrowing globally due to the continuing rise in atmospheric [CO2]. CO2elevation and the plant hormone abscisic acid (ABA) both induce rapid stomatal closure. However, the underlying signal transduction mechanisms for CO2/ABA interaction remain unclear. Two models have been considered: (
i ) CO2elevation enhances ABA concentrations and/or early ABA signaling in guard cells to induce stomatal closure and (ii ) CO2signaling merges with ABA at OST1/SnRK2.6 protein kinase activation. Here we use genetics, ABA-reporter imaging, stomatal conductance, patch clamp, and biochemical analyses to investigate these models. The strong ABA biosynthesis mutantsnced3/nced5 andaba2-1 remain responsive to CO2elevation. Rapid CO2-triggered stomatal closure in PYR/RCAR ABA receptor quadruple and hextuple mutants is not disrupted but delayed. Time-resolved ABA concentration monitoring in guard cells using a FRET-based ABA-reporter, ABAleon2.15, and ABA reporter gene assays suggest that CO2elevation does not trigger [ABA] increases in guard cells, in contrast to control ABA exposures. Moreover, CO2activates guard cell S-type anion channels innced3/nced5 and ABA receptor hextuple mutants. Unexpectedly, in-gel protein kinase assays show that unlike ABA, elevated CO2does not activate OST1/SnRK2 kinases in guard cells. The present study points to a model in which rapid CO2signal transduction leading to stomatal closure occurs via an ABA-independent pathway downstream of OST1/SnRK2.6.more » -
Increases in CO2concentration in plant leaves due to respiration in the dark and the continuing atmospheric [CO2] rise cause closing of stomatal pores, thus affecting plant–water relations globally. However, the underlying CO2/bicarbonate (CO2/HCO3−) sensing mechanisms remain unknown. [CO2] elevation in leaves triggers stomatal closure by anion efflux mediated via the SLAC1 anion channel localized in the plasma membrane of guard cells. Previous reconstitution analysis has suggested that intracellular bicarbonate ions might directly up-regulate SLAC1 channel activity. However, whether such a CO2/HCO3−regulation of SLAC1 is relevant for CO2control of stomatal movements in planta remains unknown. Here, we computationally probe for candidate bicarbonate-interacting sites within the SLAC1 anion channel via long-timescale Gaussian accelerated molecular dynamics (GaMD) simulations. Mutations of two putative bicarbonate-interacting residues, R256 and R321, impaired the enhancement of the SLAC1 anion channel activity by CO2/HCO3−in
Xenopus oocytes. Mutations of the neighboring charged amino acid K255 and residue R432 and the predicted gate residue F450 did not affect HCO3−regulation of SLAC1. Notably, gas-exchange experiments withslac1 -transformed plants expressing mutated SLAC1 proteins revealed that the SLAC1 residue R256 is required for CO2regulation of stomatal movements in planta, but not for abscisic acid (ABA)-induced stomatal closing. Patch clamp analyses of guard cells show that activation ofmore »