skip to main content


Title: Grade 5 Students’ Elective Replay After Experiencing Failures in Learning Fractions in an Educational Game: When Does Replay After Failures Benefit Learning?
Despite theoretical benefits of replayability in educational games, empirical studies have found mixed evidence about the effects of replaying a previously passed game (i.e., elective replay) on students’ learning. Particularly, we know little about behavioral features of students’ elective replay process after experiencing failures (i.e., interruptive elective replay) and the relationships between these features and learning outcomes. In this study, we analyzed 5th graders’ log data from an educational game, ST Math, when they studied fractions—one of the most important but challenging math topics. We systematically constructed interruptive elective replay features by following students’ sequential behaviors after failing a game and investigated the relationships between these features and students’ post-test performance, after taking into account pretest performance and in-game performance. Descriptive statistics of the features we constructed revealed individual differences in the elective replay process after failures in terms of when to start replaying, what to replay, and how to replay. Moreover, a Bayesian multi-model linear regression showed that interruptive elective replay after failures might be beneficial for students if they chose to replay previously passed games when failing at a higher, more difficult level in the current game and if they passed the replayed games.  more » « less
Award ID(s):
2000868
NSF-PAR ID:
10320432
Author(s) / Creator(s):
;
Date Published:
Journal Name:
LAK22: LAK22: 12th International Learning Analytics and Knowledge Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a new technology-based paradigm to support embodied mathematics educational games, using wearable devices in the form of SmartPhones and SmartWatches for math learning, for full classes of students in formal in- school education settings. The Wearable Learning Games Engine is web based infrastructure that enables students to carry one mobile device per child, as they embark on math team-based activities that require physical engagement with the environment. These Wearable Tutors serve as guides and assistants while students manipulate, measure, estimate, discern, discard and find mathematical objects that satisfy specified constraints. Multi-player math games that use this infrastructure have yielded both cognitive and affective benefits. Beyond math game play, the Wearable Games Engine Authoring Tool enables students to create games themselves for other students to play; in this process, students engage in computational thinking and learn about finite-state machines. We present the infrastructure, games, and results for a series of experiments on both game play and game creation. 
    more » « less
  2. This Work-In-Progress falls within the research category of study and, focuses on the experiences and perceptions of first- and second year engineering students when using an online engineering game that was designed to enhance understanding of statics concepts. Technology and online games are increasingly being used in engineering education to help students gain competencies in technical domains in the engineering field. Less is known about the way that these online games are designed and incorporated into the classroom environment and how these factors can ignite inequitable perspectives and experiences among engineering students. Also, little if any work that combines the TAM model and intersectionality of race and gender in engineering education has been done, though several studies have been modified to account for gender or race. This study expands upon the Technology Acceptance Model (TAM) by exploring perspectives of intersectional groups (defined as women of color who are engineering students). A Mixed Method Sequential Exploratory Research Design approach was used that extends the TAM model. Students were asked to play the engineering educational game, complete an open-ended questionnaire and then to participate in a focus group. Early findings suggest that while many students were open to learning to use the game and recommended inclusion of online engineering educational games as learning tools in classrooms, only a few indicated that they would use this tool to prepare for exams or technical job interviews. Some of the main themes identified in this study included unintended perpetuation of inequality through bias in favor of students who enjoyed competition-based learning and assessment of knowledge, and bias for students having prior experience in playing online games. Competition-based assessment related to presumed learning of course content enhanced student anxiety and feelings of intimidation and led to some students seeking to “game the game” versus learning the material, in efforts to achieve grade goals. Other students associated use of the game and the classroom weighted grading with intense stress that led them to prematurely stop the use of the engineering tool. Initial findings indicate that both game design and how technology is incorporated into the grading and testing of learning outcomes, influence student perceptions of the technology’s usefulness and ultimately the acceptance of the online game as a "learning tool." Results also point to the need to explore how the crediting and assessment of students’ performance and learning gains in these types of games could yield inequitable experiences in these types of courses. 
    more » « less
  3. Stereotypes about men being better than women at mathematics appear to influence female students’ interest and performance in mathematics. Given the potential motivational benefits of digital learning games, it is possible that games could help to reduce math anxiety, increase self-efficacy, and lead to better learning outcomes for female students. We are exploring this possibility in our work with Decimal Point, a digital learning game that scaffolds practice with decimal operations for 5th and 6th grade students. In several studies with various versions of the game, involving over 800 students across multiple years, we have consistently uncovered a learning advantage for female students with the game. In our most recent investigation of this gender effect, we decided to experiment with a central feature of the game: its use of prompted self-explanation to support student learning. Prior research has suggested that female students might benefit more from self-explanation than male students. In the new study, involving 214 middle school students, we compared three versions of self-explanation in the game – menu-based, scaffolded, and focused – each presenting students with a different type of prompted self-explanation after they solved problems in the game. We found that the focused approach led to more learning across all students than the menu-based approach, a result reported in an earlier paper. In the additional results reported in this paper, we again uncovered the gender effect – female students learned more from the game than male students, regardless of the version of self-explanation – and also found a trend in which female students made fewer self-explanation errors, suggesting they may have been more deliberate and thoughtful in their self-explanations. This self-explanation finding is a possible key to further investigation into how and why we see the gender effect in Decimal Point. 
    more » « less
  4. This Research Full paper focuses on perceptions and experiences of freshman and sophomore engineering students when playing an online serious engineering game that was designed to improve engineering intuition and knowledge of statics. Use of serious educational engineering games has increased in engineering education to help students increase technical competencies in engineering disciplines. However, few have investigated how these engineering games are experienced by the students; how games influence students' perceptions of learning, or how these factors may lead to inequitable perspectives among diverse populations of students. Purpose/Hypothesis: The purpose of this study was to explore the perceptions, appeal, and opinions about the efficacy of educational online games among a diverse population of students in an engineering mechanics statics course. It was hypothesized that compared to majority groups (e.g., men, White), women of color who are engineering students would experience less connections to the online educational game in terms of ease of use and level of frustration while playing. It is believed that these discordant views may negatively influence the game's appeal and efficacy towards learning engineering in this population of students. Design/Method: The Technology Acceptance Model (TAM) is expanded in this study, where the perspectives of women of colour (Latinx, Asian and African American) engineering students are explored. The research approach employed in this study is a mixed-method sequential exploratory design, where students first played the online engineering educational game, then completed a questionnaire, followed by participation in a focus group. Responses were initially analyzed through open and magnitude coding approaches to understand whether students thought these educational games reflected their personal culture. Results: Preliminary results indicate that though the majority of the students were receptive to using the online engineering software for their engineering education, merely a few intimated that they would use this software for engineering exam or technical job interview preparation. A level-one categorical analysis identified a few themes that comprised unintended preservation of inequality in favor of students who enjoyed contest-based education and game technology. Competition-based valuation of presumed mastery of course content fostered anxiety and intimidation among students, which caused some to "game the game" instead of studying the material, to meet grade goals. Some students indicated that they spent more time (than necessary) to learn the goals of the game than engineering content itself, suggesting a need to better integrate course material while minimizing cognitive effort in learning to navigate the game. Conclusions: Preliminary results indicate that engineering software's design and the way is coupled with course grading and assessment of learning outcomes, affect student perceptions of the technology's acceptance, usefulness, and ease of use as a "learning tool." Students were found to have different expectations of serious games juxtaposed software/apps designed for entertainment. Conclusions also indicate that acceptance of inquiry-based educational games in a classroom among diverse populations of students should clearly articulate and connect the game goals/objectives with class curriculum content. Findings also indicate that a multifaceted schema of tools, such as feedback on game challenges, and explanations for predictions of the game should be included in game/app designs. 
    more » « less
  5. Patterns of neural activity that occur spontaneously during sharp-wave ripple (SWR) events in the hippocampus are thought to play an important role in memory formation, consolidation and retrieval. Typical studies examining the content of SWRs seek to determine whether the identity and/or temporal order of cell firing is different from chance. Such ‘first-order’ analyses are focused on a single time point and template (map), and have been used to show, for instance, the existence of preplay. The major methodological challenge in first-order analyses is the construction and interpretation of different chance distributions. By contrast, ‘second-order’ analyses involve a comparison of SWR content between different time points, and/or between different templates. Typical second-order questions include tests of experience-dependence (replay) that compare SWR content before and after experience, and comparisons or replay between different arms of a maze. Such questions entail additional methodological challenges that can lead to biases in results and associated interpretations. We provide an inventory of analysis challenges for second-order questions about SWR content, and suggest ways of preventing, identifying and addressing possible analysis biases. Given evolving interest in understanding SWR content in more complex experimental scenarios and across different time scales, we expect these issues to become increasingly pervasive. This article is part of the Theo Murphy meeting issue ‘Memory reactivation: replaying events past, present and future’. 
    more » « less