To alleviate the cost of collecting and annotating large- scale point cloud datasets for 3D scene understanding tasks, we propose an unsupervised learning approach to learn features from unlabeled point cloud ”3D object” dataset by using part contrasting and object clustering with deep graph neural networks (GNNs). In the contrast learn- ing step, all the samples in the 3D object dataset are cut into two parts and put into a ”part” dataset. Then a contrast learning GNN (ContrastNet) is trained to verify whether two randomly sampled parts from the part dataset belong to the same object. In the cluster learning step, the trained ContrastNet is applied to all the samples in the original 3D object dataset to extract features, which are used to group the samples into clusters. Then another GNN for cluster- ing learning (ClusterNet) is trained to predict the cluster IDs of all the training samples. The contrasting learning forces the ContrastNet to learn high-level semantic features of objects but probably ignores low-level features, while the ClusterNet improves the quality of learned features by be- ing trained to discover objects that belong to the same se- mantic categories by using cluster IDs. We have conducted extensive experiments to evaluate the proposed framework on point cloud classification tasks. The proposed unsupervised learning approach obtained comparable performance to the state-of-the-art unsupervised learning methods that used much more complicated network structures. The code and an extended version of this work is publicly available via: https://github.com/lingzhang1/ContrastNet
more »
« less
PartGAN: Weakly-supervised Part Decomposition for Image Generation and Segmentation
We propose PartGAN, a novel generative model that disentangles and generates background, object shape, object texture, and decomposes objects into parts without any mask or part annotations. To achieve object-level disentanglement, we build upon prior work and maximize the mutual information between the generated factors and sampled latent prior codes. To achieve part-level decomposition, we learn a part generator, which decomposes an object into parts that are spatially localized, disjoint, and consistent across instances. Extensive experiments on multiple datasets demonstrate that PartGAN discovers consistent object parts, which enable part-based controllable image generation.
more »
« less
- PAR ID:
- 10320568
- Date Published:
- Journal Name:
- British Machine Vision Conference (BMVC)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
To produce a large object within a limited workspace of an Additive Manufacturing (AM) machine, this study proposes a two-phase method: (1) part decomposition to separate a part into several pieces; and (2) 2D batch placement to place the decomposed parts onto multiple batches. In Phase 1, the large object is re-designed into small pieces by a Binary Space Partitioning (BSP) with a hyperplane, where parts are decomposed recursively until no parts are oversize the limited size of the workspace. In Phase 2, the decomposed parts are grouped as batches to go through serial build processes using a single AM machine. Within a batch, the decomposed parts are placed based on a 2D packing method in which parts are not placed over other parts to avoid potential surface damage caused by support structure between parts. A genetic algorithm (GA) for the 2D batch placement is applied to find near-optimal solutions for build orientations, placement positions, and batch number for each part. As an objective function, the total process time including build time and post-processing time is minimized. This research provides some insights into the relation between part decomposition and 2D batch placement. It shows that minimizing the number of decomposed parts could be more critical than minimizing the size of decomposed parts for reducing the overall process time in serial batch processes.more » « less
-
We build rearticulable models for arbitrary everyday man-made objects containing an arbitrary number of parts that are connected together in arbitrary ways via 1 degree-of-freedom joints. Given point cloud videos of such everyday objects, our method identifies the distinct object parts, what parts are connected to what other parts, and the properties of the joints connecting each part pair. We do this by jointly optimizing the part segmentation, transformation, and kinematics using a novel energy minimization framework. Our inferred animatable models, enables retargeting to novel poses with sparse point correspondences guidance. We test our method on a new articulating robot dataset, and the Sapiens dataset with common daily objects, as well as real-world scans. Experiments show that our method outperforms two leading prior works on various metrics.more » « less
-
null (Ed.)We present MultiBodySync, a novel, end-to-end trainable multi-body motion segmentation and rigid registration framework for multiple input 3D point clouds. The two non-trivial challenges posed by this multi-scan multibody setting that we investigate are: (i) guaranteeing correspondence and segmentation consistency across multiple input point clouds capturing different spatial arrangements of bodies or body parts; and (ii) obtaining robust motion-based rigid body segmentation applicable to novel object categories. We propose an approach to address these issues that incorporates spectral synchronization into an iterative deep declarative network, so as to simultaneously recover consistent correspondences as well as motion segmentation. At the same time, by explicitly disentangling the correspondence and motion segmentation estimation modules, we achieve strong generalizability across different object categories. Our extensive evaluations demonstrate that our method is effective on various datasets ranging from rigid parts in articulated objects to individually moving objects in a 3D scene, be it single-view or full point clouds.more » « less
-
To alleviate the cost of collecting and annotating large-scale "3D object" point cloud data, we propose an unsupervised learning approach to learn features from an unlabeled point cloud dataset by using part contrasting and object clustering with deep graph convolutional neural networks (GCNNs). In the contrast learning step, all the samples in the 3D object dataset are cut into two parts and put into a "part" dataset. Then a contrast learning GCNN (ContrastNet) is trained to verify whether two randomly sampled parts from the part dataset belong to the same object. In the cluster learning step, the trained ContrastNet is applied to all the samples in the original 3D object dataset to extract features, which are used to group the samples into clusters. Then another GCNN for clustering learning (ClusterNet) is trained from the orignal 3D data to predict the cluster IDs of all the training samples. The contrasting learning forces the ContrastNet to learn semantic features of objects, while the ClusterNet improves the quality of learned features by being trained to discover objects that belong to the same semantic categories by using cluster IDs. We have conducted extensive experiments to evaluate the proposed framework on point cloud classification tasks. The proposed unsupervised learning approach obtains comparable performance to the state-of-the-art with heavier shape auto-encoding unsupervised feature extraction methods. We have also tested the networks on object recognition using partial 3D data, by simulating occlusions and perspective views, and obtained practically useful results. The code of this work is publicly available at: https://github.com/lingzhang1/ContrastNet.more » « less
An official website of the United States government

