Recent experiments indicated that nanoparticles (NPs) might efficiently catalyze multiple chemical reactions, frequently exhibiting new phenomena. One of those surprising observations is intra-particle catalytic cooperativity, when the reactions at one active site can stimulate the reactions at spatially distant sites. Theoretical explanations of these phenomena have been presented, pointing out the important role of charged hole dynamics. However, the crucial feature of nanoparticles that can undergo dynamic structural surface rearrangements, potentially affecting the catalytic properties, has not yet been accounted for. We present a theoretical study of the effect of dynamic restructuring in NPs on intra-particle catalytic cooperativity. It is done by extending the original static discrete-state stochastic framework that quantitatively evaluates the catalytic communications. The dynamic restructuring is modeled as stochastic transitions between states with different dynamic properties of charged holes. Our analysis reveals that the communication times always decrease with increasing rates of dynamic restructuring, while the communication lengths exhibit a dynamic behavior that depends on how dynamic fluctuations affect migration and death rates of charged holes. Computer simulations fully support theoretical predictions. These findings provide important insights into the microscopic mechanisms of catalysis on single NPs, suggesting specific routes to rationally design more efficient catalytic systems.
more »
« less
Microscopic mechanisms of cooperative communications within single nanocatalysts
Catalysis is a method of accelerating chemical reactions that is critically important for fundamental research as well as for industrial applications. It has been recently discovered that catalytic reactions on metal nanoparticles exhibit cooperative effects. The mechanism of these observations, however, remains not well understood. In this work, we present a theoretical investigation on possible microscopic origin of cooperative communications in nanocatalysts. In our approach, the main role is played by positively charged holes on metal surfaces. A corresponding discrete-state stochastic model for the dynamics of holes is developed and explicitly solved. It is shown that the observed spatial correlation lengths are given by the average distances migrated by the holes before they disappear, while the temporal memory is determined by their lifetimes. Our theoretical approach is able to explain the universality of cooperative communications as well as the effect of external electric fields. Theoretical predictions are in agreement with experimental observations. The proposed theoretical framework quantitatively clarifies some important aspects of the microscopic mechanisms of heterogeneous catalysis.
more »
« less
- PAR ID:
- 10320639
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 119
- Issue:
- 3
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Modern chemical science and industries critically depend on the application of various catalytic methods. However, the underlying molecular mechanisms of these processes still remain not fully understood. Recent experimental advances that produced highly-efficient nanoparticle catalysts allowed researchers to obtain more quantitative descriptions, opening the way to clarify the microscopic picture of catalysis. Stimulated by these developments, we present a minimal theoretical model that investigates the effect of heterogeneity in catalytic processes at the single-particle level. Using a discrete-state stochastic framework that accounts for the most relevant chemical transitions, we explicitly evaluated the dynamics of chemical reactions on single heterogeneous nanocatalysts with different types of active sites. It is found that the degree of stochastic noise in nanoparticle catalytic systems depends on several factors that include the heterogeneity of catalytic efficiencies of active sites and distinctions between chemical mechanisms on different active sites. The proposed theoretical approach provides a single-molecule view of heterogeneous catalysis and also suggests possible quantitative routes to clarify some important molecular details of nanocatalysts.more » « less
-
All chemical processes exhibit two main universal features. They are stochastic because chemical reactions might happen only after random successful collisions of reacting species, and they are dynamic because the amount of reactants and products change with time. Since biological processes rely heavily on specific chemical reactions, stochasticity and dynamics are also crucial features for all living systems. To understand the molecular mechanisms of chemical and biological processes, it is important to develop and apply theoretical methods that fully incorporate the randomness and dynamic nature of these systems. In recent years, there have been significant advances in formulating and exploring such theoretical methods. As an illustration of such developments, in this review, the recent applications of stochastic kinetic models for various biological processes are discussed. Specifically, we focus on applying these theoretical approaches to investigate the biological signaling, clearance of bacteria under antibiotics, T cells activation in the immune system, and cancer initiation dynamics. The main advantage of the presented stochastic kinetic models is that they generally can be solved analytically, allowing to clarify the underlying microscopic picture, as well as explain the existing experimental observations and make new testable predictions. This theoretical approach becomes a powerful tool in uncovering the molecular mechanisms of complex natural phenomena.more » « less
-
Abstract Motor proteins, also known as biological molecular motors, play important roles in various intracellular processes. Experimental investigations suggest that molecular motors interact with each other during the cellular transport, but the nature of such interactions remains not well understood. Stimulated by these observations, we present a theoretical study aimed to understand the effect of the range of interactions on dynamics of interacting molecular motors. For this purpose, we develop a new version of the totally asymmetric simple exclusion processes in which nearest-neighbor as well as the next nearest-neighbor interactions are taken into account in a thermodynamically consistent way. A theoretical framework based on a cluster mean-field approximation, which partially takes correlations into account, is developed to evaluate the stationary properties of the system. It is found that fundamental current–density relations in the system strongly depend on the strength and the sign of interactions, as well as on the range of interactions. For repulsive interactions stronger than some critical value, a mean-field theoretical approach predicts that increasing the range of interactions might lead to a change from unimodal to trimodal dependence in the flux-density fundamental diagram. However, it is not fully supported by extensive Monte Carlo computer simulations that test theoretical predictions. Although in most ranges of parameters a reasonable agreement between theoretical calculations and computer simulations is observed, there are situations when the cluster mean-field approach fails to describe properly the dynamics in the system. Theoretical arguments to explain these observations are presented. Our theoretical analysis clarifies the microscopic picture of how the range of interactions influences the dynamics of interacting molecular motors.more » « less
-
The development of synthetic, metal-based catalysts to perform intracellular bioorthogonal reactions represents a relatively new and important area of research that combines transition metal catalysis and chemical biology. The ability to perform reactions in cellulo , especially those transformations without a natural counterpart, offers a versatile tool for medicinal chemists and chemical biologists. With proper modification of the metal catalysts, it is even possible to direct a reaction to certain intracellular sites. This review highlights advances in this new area, from early work on intracellular functional group conversions to recent advances in intracellular synthesis of drugs, including cytotoxic agents. Both the fundamental and applied aspects of this approach to intracellular synthesis are reviewed.more » « less
An official website of the United States government

