Sea surface salinity (SSS) anomalies and near-surface thermohaline stratification are key parameters to improve our understanding of sea ice retreat and formation in polar regions. Since 2010, the remote sensing salinity missions ESA Soil Moisture Ocean Salinity (SMOS) and NASA Soil Moisture Active Passive (SMAP) offer unprecedented SSS observations globally (SSSSMOS and SSSSMAP, respectively). In this study, we compare these observations with in situ salinity observations (SSSin‐situ) made during the NASA salinity field campaign Salinity and Stratification at Sea Ice Edge (SASSIE) during the fall of 2022. The SASSIE SSSin‐situ were collected by nine different platforms: Castaway and Underway conductivity–temperature–depth (CTD), Wave Gliders, Thermosalinograph, Snake salinity, Surface Wave Instrument Float with Tracking (SWIFT) drifters, Upper Temperature of the Polar Oceans (UpTempO) buoys, Jet Surface Salinity Profiler (Jet-SSP), and Autonomous Lagrangian Thermometric Observer (ALTO) and Air-Launched Autonomous Micro Observer (ALAMO) profilers. Because satellite SSS retrievals are impacted by land and sea ice contaminations, cold temperatures, and surface roughness, mean differences, root-mean-square difference (RMSD), and standard deviation (STD) between satellite SSS and SSSin‐situ are examined as a function of distance from the coast and sea ice edge, sea surface temperature (SST), and wind speed. We find that SSSSMOS and SSSSMAP are well correlated (0.66 and 0.78, respectively) with similar RMSD when compared with SSSin‐situ. Close to the coast (0–150 km), SSSSMAP compares better with SSSin‐situ with RMSD (<2 g kg−1) lower than that from SSSSMOS. Near the sea ice edge (0–150 km), SSSSMOS compares better with SSSin‐situ with RMSD (<2.5 g kg−1) lower than that from SSSSMAP. In cold water (SST < 1.5°C) and low wind speed conditions (<7 m s−1), both SSSSMOS and SSSSMAP are consistent with each other. The RMSD between SSSSMAP and SSSin‐situ decreases considerably (<1 g kg−1) when SST > 1.5°C, while the RMSD between SSSSMOS and SSSin‐situ shows less dependence on SST.
more »
« less
Projections of physical conditions in the Gulf of Maine in 2050
The Gulf of Maine (GoM) is currently experiencing its warmest period in the instrumental record. Two high-resolution numerical ocean models were used to downscale global climate projections to produce four estimates of ocean physical properties in the GoM in 2050 for the “business as usual” carbon emission scenario. All simulations project increases in the GoM mean sea surface temperature (of 1.1 °C–2.4 °C) and bottom temperature (of 1.5 °C–2.1 °C). In terms of mean vertical structure, all simulations project temperature increases throughout the water column (surface-to-bottom changes of 0.2 °C–0.5 °C). The GoM volume-averaged changes in temperature range from 1.5 °C to 2.3 °C. Translated to rates, the sea surface temperature projections are all greater than the observed 100-year rate, with two projections below and two above the observed 1982–2013 rate. Sea surface salinity changes are more variable, with three of four simulations projecting decreases. Bottom salinity changes vary spatially and between projections, with three simulations projecting varying increases in deeper waters but decreases in shallower zones and one simulation projecting a salinity increase in all bottom waters. In terms of mean vertical structure, salinity structure varies, with two simulations projecting surface decreases that switch sign with depth and two projecting increases throughout the (subsurface) water column. Three simulations show a difference between coastal and deeper waters whereby the coastal zone is projected to be systematically fresher than deeper waters, by as much as 0.2 g kg–1. Stratification, 50 m to surface, is projected to increase in all simulations, with rates ranging from 0.003 to 0.006 kg m–4 century–1 which are lower than the observed change on the Scotian Shelf. The results from these simulations can be used to assess potential acidification and ecosystem changes in the GoM.
more »
« less
- Award ID(s):
- 1851866
- PAR ID:
- 10320676
- Date Published:
- Journal Name:
- Elementa: Science of the Anthropocene
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2325-1026
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)This study presents near future (2020–2044) temperature and precipitation changes over the Antarctic Peninsula under the high-emission scenario (RCP8.5). We make use of historical and projected simulations from 19 global climate models (GCMs) participating in Coupled Model Intercomparison Project phase 5 (CMIP5). We compare and contrast GCMs projections with two groups of regional climate model simulations (RCMs): (1) high resolution (15-km) simulations performed with Polar-WRF model forced with bias-corrected NCAR-CESM1 (NC-CORR) over the Antarctic Peninsula, (2) medium resolution (50-km) simulations of KNMI-RACMO21P forced with EC-EARTH (EC) obtained from the CORDEX-Antarctica. A further comparison of historical simulations (1981–2005) with respect to ERA5 reanalysis is also included for circulation patterns and near-surface temperature climatology. In general, both RCM boundary conditions represent well the main circulation patterns of the historical period. Nonetheless, there are important differences in projections such as a notable deepening and weakening of the Amundsen Sea Low in EC and NC-CORR, respectively. Mean annual near-surface temperatures are projected to increase by about 0.5–1.5 ◦ C across the entire peninsula. Temperature increase is more substantial in autumn and winter ( ∼ 2 ◦C). Following opposite circulation pattern changes, both EC and NC-CORR exhibit different warming rates, indicating a possible continuation of natural decadal variability. Although generally showing similar temperature changes, RCM projections show less warming and a smaller increase in melt days in the Larsen Ice Shelf compared to their respective driving fields. Regarding precipitation, there is a broad agreement among the simulations, indicating an increase in mean annual precipitation ( ∼ 5 to 10%). However, RCMs show some notable differences over the Larsen Ice Shelf where total precipitation decreases (for RACMO) and shows a small increase in rain frequency. We conclude that it seems still difficult to get consistent projections from GCMs for the Antarctic Peninsula as depicted in both RCM boundary conditions. In addition, dominant and common changes from the boundary conditions are largely evident in the RCM simulations. We argue that added value of RCM projections is driven by processes shaped by finer local details and different physics schemes that are introduced by RCMs, particularly over the Larsen Ice Shelf.more » « less
-
Anthropogenic freshwater salinization affects thousands of lakes worldwide, and yet little is known about how salt loading may shift timing of lake stratification and spring mixing in dimictic lakes. Here, we investigate the impact of salinization on mixing in Lakes Mendota and Monona, Wisconsin, by deploying under-ice buoys to record salinity gradients, using an analytical approach to quantify salinity thresholds that prevent spring mixing, and running an ensemble of vertical one-dimensional hydrodynamic lake models (GLM, GOTM, and Simstrat) to investigate the long-term impact of winter salt loading on mixing and stratification. We found that spring salinity gradients between surface and bottom waters persist up to a month after ice-off, and that theory predicts a salinity gradient of 1.3–1.4 g kg-1 would prevent spring mixing. Numerical models project that salt loading delays spring mixing and increases water column stability, with ramifications for oxygenation of bottom waters, biogeochemistry, and lake habitability.more » « less
-
Ocean acidification (OA) is increasing predictably in the global ocean as rising levels of atmospheric carbon dioxide lead to higher oceanic concentrations of inorganic carbon. The Gulf of Maine (GOM) is a seasonally varying region of confluence for many processes that further affect the carbonate system including freshwater influences and high productivity, particularly near the coast where local processes impart a strong influence. Two main regions within the GOM currently experience carbonate conditions that are suboptimal for many organisms—the nearshore and subsurface deep shelf. OA trends over the past 15 years have been masked in the GOM by recent warming and changes to the regional circulation that locally supply more Gulf Stream waters. The region is home to many commercially important shellfish that are vulnerable to OA conditions, as well as to the human populations whose dependence on shellfish species in the fishery has continued to increase over the past decade. Through a review of the sensitivity of the regional marine ecosystem inhabitants, we identified a critical threshold of 1.5 for the aragonite saturation state (Ωa). A combination of regional high-resolution simulations that include coastal processes were used to project OA conditions for the GOM into 2050. By 2050, the Ωa declines everywhere in the GOM with most pronounced impacts near the coast, in subsurface waters, and associated with freshening. Under the RCP 8.5 projected climate scenario, the entire GOM will experience conditions below the critical Ωa threshold of 1.5 for most of the year by 2050. Despite these declines, the projected warming in the GOM imparts a partial compensatory effect to Ωa by elevating saturation states considerably above what would result from acidification alone and preserving some important fisheries locations, including much of Georges Bank, above the critical threshold.more » « less
-
Abstract Building on previous work using single-basin models, we here explore the time-dependent response of the Atlantic meridional overturning circulation (AMOC) to a sudden global temperature change in a two-basin ocean–ice model. We find that the previously identified mechanisms remain qualitatively useful to explain the transient and the long-term time-mean responses of the AMOC in our simulations. Specifically, we find an initial weakening of the AMOC in response to warming (and vice versa for cooling), controlled by the mid-depth meridional temperature contrast across the Atlantic basin. The long-term mean response instead is controlled primarily by changes in the abyssal stratification within the basin. In contrast to previous studies we find that for small-amplitude surface temperature changes, the equilibrium AMOC is almost unchanged, as the abyssal stratification remains similar due to a substantial compensation between the effects of salinity and temperature changes. The temperature-driven stratification change results from the differential warming/cooling between North Atlantic Deep Water and Antarctic Bottom Water, while the salinity change is driven by changes in Antarctic sea ice formation. Another distinct feature of our simulations is the emergence of AMOC variability in the much colder and much warmer climates. We discuss how this variability is related to variations in deep-ocean heat content, surface salinity, and sea ice in the deep convective regions, both in the North Atlantic and in the Southern Ocean, and its potential relevance to past and future climates.more » « less
An official website of the United States government

