This paper studies controlling segregation in social networks via exogenous incentives. We construct an edge formation game on a directed graph. A user (node) chooses the probability with which it forms an inter- or intra- community edge based on a utility function that reflects the tradeoff between homophily (preference to connect with individuals that belong to the same group) and the preference to obtain an exogenous incentive. Decisions made by the users to connect with each other determine the evolution of the social network. We explore an algorithmic recommendation mechanism where the exogenous incentive in the utility function is based on weak ties which incentivizes users to connect across communities and mitigates the segregation. This setting leads to a submodular game with a unique Nash equilibrium. In numerical simulations, we explore how the proposed model can be useful in controlling segregation and echo chambers in social networks under various settings.
more »
« less
Extracting Semantic Information from Dynamic Graphs of Geometric Data
n this paper, we demonstrate the utility of dynamic network sequences to provide insight into geometric data; moreover, we construct a nat- ural syntactic and semantic understanding of these network sequences for useful downstream applications. As a proof-of-concept, we study the trajectory data of basketball players and construct “interaction networks” to express an essential game mechanic: the ability for the offensive team to pass the ball to each other. These networks give rise to a library of player configurations that can in turn be modeled by a jump Markov model. This model provides a highly compressed representation of a game, while capturing important latent structures. By lever- aging this structure, we use a Transformer to predict trajectories with increased accuracy.
more »
« less
- Award ID(s):
- 2006125
- PAR ID:
- 10320710
- Date Published:
- Journal Name:
- 10th International Conference on Complex Networks and their Applications
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Game-theoretic models of influence in networks often assume the network structure to be static. In this paper, we allow the network structure to vary according to the underlying behavioral context. This leads to several interesting questions on two fronts. First, how do we identify different contexts and learn the corresponding network structures using real-world data? We focus on the U.S. Senate and apply unsupervised machine learning techniques, such as fuzzy clustering algorithms and generative models, to identify spheres of legislation as context and learn an influence network for each sphere. Second, how do we analyze these networks to gain an insight into the role played by the spheres of legislation in various interesting constructs like polarization and most influential nodes? To this end, we apply both game-theoretic and social network analysis techniques. In particular, we show that game-theoretic notion of most influential nodes brings out the strategic aspects of interactions like bipartisan grouping, which structural centrality measures fail to capture.more » « less
-
Game-theoretic models of influence in networks often assume the network structure to be static. In this paper, we allow the network structure to vary according to the underlying behavioral context. This leads to several interesting questions on two fronts. First, how do we identify different contexts and learn the corresponding network structures using real-world data? We focus on the U.S. Senate and apply unsupervised machine learning techniques, such as fuzzy clustering algorithms and generative models, to identify different spheres of legislation as context and learn an influence network for each sphere. Second, how do we analyze these networks in order to gain an insight into the role played by the spheres of legislation in various interesting constructs like polarization and most influential nodes? To this end, we apply both game-theoretic and social network analysis techniques. In particular, we show that game-theoretic notion of most influential nodes brings out the strategic aspects of interactions like bipartisan grouping, which typical centrality measures fail to capture. We also show that for the same set of senators, some spheres of legislation are more polarizing than others.more » « less
-
null (Ed.)Protest is a collective action problem and can be modeled as a coordination game in which people take an action with the potential to achieve shared mutual benefits. In game-theoretic contexts, successful coordination requires that people know each others' willingness to participate, and that this information is common knowledge among a sufficient number of people. We develop an agent-based model of collective action that was the first to combine social structure and individual incentives. Another novel aspect of the model is that a social network increases in density (i.e., new graph edges are formed) over time. The model studies the formation of common knowledge through local interactions and the characterizing social network structures. We use four real-world, data-mined social networks (Facebook, Wikipedia, email, and peer-to-peer networks) and one scale-free network, and conduct computational experiments to study contagion dynamics under different conditions.more » « less
-
Bae, K-H; Feng, B; Kim, S; Lazarova-Molnar, S; Zheng, Z; Roeder, T; Thiesing, R. (Ed.)Protest is a collective action problem and can be modeled as a coordination game in which people take an action with the potential to achieve shared mutual benefits. In game-theoretic contexts, successful coordination requires that people know each others’ willingness to participate, and that this information is common knowledge among a sufficient number of people. We develop an agent-based model of collective action that was the first to combine social structure and individual incentives. Another novel aspect of the model is that a social network increases in density (i.e., new graph edges are formed) over time. The model studies the formation of common knowledge through local interactions and the characterizing social network structures. We use four real-world, data-mined social networks (Facebook, Wikipedia, email, and peer-to-peer networks) and one scale-free network, and conduct computational experiments to study contagion dynamics under different conditions.more » « less
An official website of the United States government

