Unmanned Aerial Vehicle (UAV)-assisted Multi-access Edge Computing (MEC) systems have emerged recently as a flexible and dynamic computing environment, providing task offloading service to the users. In order for such a paradigm to be viable, the operator of a UAV-mounted MEC server should enjoy some form of profit by offering its computing capabilities to the end users. To deal with this issue in this paper, we apply a usage-based pricing policy for allowing the exploitation of the servers’ computing resources. The proposed pricing mechanism implicitly introduces a more social behavior to the users with respect to competing for the UAV-mounted MEC servers’ computation resources. In order to properly model the users’ risk-aware behavior within the overall data offloading decision-making process the principles of Prospect Theory are adopted, while the exploitation of the available computation resources is considered based on the theory of the Tragedy of the Commons. Initially, the user’s prospect-theoretic utility function is formulated by quantifying the user’s risk seeking and loss aversion behavior, while taking into account the pricing mechanism. Accordingly, the users’ pricing and risk-aware data offloading problem is formulated as a distributed maximization problem of each user’s expected prospect-theoretic utility function and addressed as a non-cooperativemore »
This content will become publicly available on March 28, 2023
Controlling Segregation in Social Network Dynamics as an Edge Formation Game
This paper studies controlling segregation in social networks via exogenous incentives. We construct an edge formation game on a directed graph. A user (node) chooses the probability with which it forms an inter- or intra- community edge based on a utility function that reflects the tradeoff between homophily (preference to connect with individuals that belong to the same group) and the preference to obtain an exogenous incentive. Decisions made by the users to connect with each other determine the evolution of the social network. We explore an algorithmic recommendation mechanism where the exogenous incentive in the utility function is based on weak ties which incentivizes users to connect across communities and mitigates the segregation. This setting leads to a submodular game with a unique Nash equilibrium. In numerical simulations, we explore how the proposed model can be useful in controlling segregation and echo chambers in social networks under various settings.
- Award ID(s):
- 2112457
- Publication Date:
- NSF-PAR ID:
- 10328216
- Journal Name:
- IEEE Transactions on Network Science and Engineering
- Page Range or eLocation-ID:
- 1 to 1
- ISSN:
- 2334-329X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Point-of-interest (POI) recommendation is essential to a variety of services for both users and business. An extensive number of models have been developed to improve the recommendation performance by exploiting various characteristics and relations among POIs (e.g., spatio-temporal, social, etc.). However, very few studies closely look into the underlying mechanism accounting for why users prefer certain POIs to others. In this work, we initiate the first attempt to learn the distribution of user latent preference by proposing an Adversarial POI Recommendation (APOIR) model, consisting of two major components: (1) the recommender (R) which suggests POIs based on the learned distribution by maximizing the probabilities that these POIs are predicted as unvisited and potentially interested; and (2) the discriminator (D) which distinguishes the recommended POIs from the true check-ins and provides gradients as the guidance to improve R in a rewarding framework. Two components are co-trained by playing a minimax game towards improving itself while pushing the other to the boundary. By further integrating geographical and social relations among POIs into the reward function as well as optimizing R in a reinforcement learning manner, APOIR obtains significant performance improvement in four standard metrics compared to the state of the art methods.
-
Social recommendation has achieved great success in many domains including e-commerce and location-based social networks. Existing methods usually explore the user-item interactions or user-user connections to predict users’ preference behaviors. However, they usually learn both user and item representations in Euclidean space, which has large limitations for exploring the latent hierarchical property in the data. In this article, we study a novel problem of hyperbolic social recommendation, where we aim to learn the compact but strong representations for both users and items. Meanwhile, this work also addresses two critical domain-issues, which are under-explored. First, users often make trade-offs with multiple underlying aspect factors to make decisions during their interactions with items. Second, users generally build connections with others in terms of different aspects, which produces different influences with aspects in social network. To this end, we propose a novel graph neural network (GNN) framework with multiple aspect learning, namely, HyperSoRec. Specifically, we first embed all users, items, and aspects into hyperbolic space with superior representations to ensure their hierarchical properties. Then, we adapt a GNN with novel multi-aspect message-passing-receiving mechanism to capture different influences among users. Next, to characterize the multi-aspect interactions of users on items, we propose an adaptivemore »
-
We consider an InterDependent Security (IDS) game with networked agents and positive externality where each agent chooses an effort/investment level for securing itself. The agents are interdependent in that the state of security of one agent depends not only on its own investment but also on the other agents' effort/investment. Due to the positive externality, the agents under-invest in security which leads to an inefficient Nash equilibrium (NE). While much has been analyzed in the literature on the under-investment issue, in this study we take a different angle. Specifically, we consider the possibility of allowing agents to pool their resources, i.e., allowing agents to have the ability to both invest in themselves as well as in other agents. We show that the interaction of strategic and selfish agents under resource pooling (RP) improves the agents' effort/investment level as well as their utility as compared to a scenario without resource pooling. We show that the social welfare (total utility) at the NE of the game with resource pooling is higher than the maximum social welfare attainable in a game without resource pooling but by using an optimal incentive mechanism. Furthermore, we show that while voluntary participation in this latter scenario ismore »
-
Modern Public Safety Networks (PSNs) are assisted by Unmanned Aerial Vehicles (UAVs) to provide a resilient communication paradigm during catastrophic events. In this context, we propose a distributed user-centric risk-aware resource management framework in UAV-assisted PSNs supported by both a static UAV and a mobile UAV. The mobile UAV is entitled to a larger portion of the available spectrum due to its capability and flexibility to re-position itself, and therefore establish better communication channel conditions to the users, compared to the static UAV. However, the potential over-exploitation of the mobile UAV-based communication by the users may lead to the mobile UAV’s failure to serve the users due to the increased levels of interference, consequently introducing risk in the user decisions. To capture this uncertainty, we follow the principles of Prospect Theory and design a user’s prospect-theoretic utility function that reflects user’s risk-aware behavior regarding its transmission power investment to the static and/or mobile UAV-based communication option. A non-cooperative game among the users is formulated, where each user determines its power investment strategy to the two available communication choices in order to maximize its expected prospect-theoretic utility. The existence and uniqueness of a Pure Nash Equilibrium (PNE) is proven and themore »