skip to main content


Title: Bacillus subtilis Histidine Kinase KinC Activates Biofilm Formation by Controlling Heterogeneity of Single-Cell Responses
ABSTRACT In Bacillus subtilis , biofilm and sporulation pathways are both controlled by a master regulator, Spo0A, which is activated by phosphorylation via a phosphorelay—a cascade of phosphotransfer reactions commencing with autophosphorylation of histidine kinases KinA, KinB, KinC, KinD, and KinE. However, it is unclear how the kinases, despite acting via the same regulator, Spo0A, differentially regulate downstream pathways, i.e., how KinA mainly activates sporulation genes and KinC mainly activates biofilm genes. In this work, we found that KinC also downregulates sporulation genes, suggesting that KinC has a negative effect on Spo0A activity. To explain this effect, with a mathematical model of the phosphorelay, we revealed that unlike KinA, which always activates Spo0A, KinC has distinct effects on Spo0A at different growth stages: during fast growth, KinC acts as a phosphate source and activates Spo0A, whereas during slow growth, KinC becomes a phosphate sink and contributes to decreasing Spo0A activity. However, under these conditions, KinC can still increase the population-mean biofilm matrix production activity. In a population, individual cells grow at different rates, and KinC would increase the Spo0A activity in the fast-growing cells but reduce the Spo0A activity in the slow-growing cells. This mechanism reduces single-cell heterogeneity of Spo0A activity, thereby increasing the fraction of cells that activate biofilm matrix production. Thus, KinC activates biofilm formation by controlling the fraction of cells activating biofilm gene expression. IMPORTANCE In many bacterial and eukaryotic systems, multiple cell fate decisions are activated by a single master regulator. Typically, the activities of the regulators are controlled posttranslationally in response to different environmental stimuli. The mechanisms underlying the ability of these regulators to control multiple outcomes are not understood in many systems. By investigating the regulation of Bacillus subtilis master regulator Spo0A, we show that sensor kinases can use a novel mechanism to control cell fate decisions. By acting as a phosphate source or sink, kinases can interact with one another and provide accurate regulation of the phosphorylation level. Moreover, this mechanism affects the cell-to-cell heterogeneity of the transcription factor activity and eventually determines the fraction of different cell types in the population. These results demonstrate the importance of intercellular heterogeneity for understanding the effects of genetic perturbations on cell fate decisions. Such effects can be applicable to a wide range of cellular systems.  more » « less
Award ID(s):
2019745
NSF-PAR ID:
10320713
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Zhulin, Igor B.
Date Published:
Journal Name:
mBio
Volume:
13
Issue:
1
ISSN:
2150-7511
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kovács, Ákos T. (Ed.)
    ABSTRACT In Bacillus subtilis , master regulator Spo0A controls several cell-differentiation pathways. Under moderate starvation, phosphorylated Spo0A (Spo0A~P) induces biofilm formation by indirectly activating genes controlling matrix production in a subpopulation of cells via an SinI-SinR-SlrR network. Under severe starvation, Spo0A~P induces sporulation by directly and indirectly regulating sporulation gene expression. However, what determines the heterogeneity of individual cell fates is not fully understood. In particular, it is still unclear why, despite being controlled by a single master regulator, biofilm matrix production and sporulation seem mutually exclusive on a single-cell level. In this work, with mathematical modeling, we showed that the fluctuations in the growth rate and the intrinsic noise amplified by the bistability in the SinI-SinR-SlrR network could explain the single-cell distribution of matrix production. Moreover, we predicted an incoherent feed-forward loop; the decrease in the cellular growth rate first activates matrix production by increasing in Spo0A phosphorylation level but then represses it via changing the relative concentrations of SinR and SlrR. Experimental data provide evidence to support model predictions. In particular, we demonstrate how the degree to which matrix production and sporulation appear mutually exclusive is affected by genetic perturbations. IMPORTANCE The mechanisms of cell-fate decisions are fundamental to our understanding of multicellular organisms and bacterial communities. However, even for the best-studied model systems we still lack a complete picture of how phenotypic heterogeneity of genetically identical cells is controlled. Here, using B. subtilis as a model system, we employ a combination of mathematical modeling and experiments to explain the population-level dynamics and single-cell level heterogeneity of matrix gene expression. The results demonstrate how the two cell fates, biofilm matrix production and sporulation, can appear mutually exclusive without explicitly inhibiting one another. Such a mechanism could be used in a wide range of other biological systems. 
    more » « less
  2. ABSTRACT His-Asp phosphorelay (also known as two-component signal transduction) proteins are the predominant mechanism used in most bacteria to control behavior in response to changing environmental conditions. In addition to systems consisting of a simple two-component system utilizing an isolated histidine kinase/response regulator pair, some bacteria are enriched in histidine kinases that serve as signal integration proteins; these kinases are usually characterized by noncanonical domain architecture, and the responses that they regulate may be difficult to identify. The environmental bacterium Myxococcus xanthus is highly enriched in these noncanonical histidine kinases. M. xanthus is renowned for a starvation-induced multicellular developmental program in which some cells are induced to aggregate into fruiting bodies and then differentiate into environmentally resistant spores. Here, we characterize the M. xanthus orphan hybrid histidine kinase SinK (Mxan_4465), which consists of a histidine kinase transmitter followed by two receiver domains (REC 1 and REC 2 ). Nonphosphorylatable sinK mutants were analyzed under two distinct developmental conditions and using a new high-resolution developmental assay. These assays revealed that SinK autophosphorylation and REC 1 impact the onset of aggregation and/or the mobility of aggregates, while REC 2 impacts sporulation efficiency. SinK activity is controlled by a genus-specific hypothetical protein (SinM; Mxan_4466). We propose that SinK serves to fine-tune fruiting body morphology in response to environmental conditions. IMPORTANCE Biofilms are multicellular communities of microorganisms that play important roles in host disease or environmental biofouling. Design of preventative strategies to block biofilms depends on understanding the molecular mechanisms used by microorganisms to build them. The production of biofilms in bacteria often involves two-component signal transduction systems in which one protein component (a kinase) detects an environmental signal and, through phosphotransfer, activates a second protein component (a response regulator) to change the transcription of genes necessary to produce a biofilm. We show that an atypical kinase, SinK, modulates several distinct stages of specialized biofilm produced by the environmental bacterium Myxococcus xanthus . SinK likely integrates multiple signals to fine-tune biofilm formation in response to distinct environmental conditions. 
    more » « less
  3. ABSTRACT Biofilm development in Bacillus subtilis is regulated at multiple levels. While a number of known signals that trigger biofilm formation do so through the activation of one or more sensory histidine kinases, it was discovered that biofilm activation is also coordinated by sensing intracellular metabolic signals, including serine starvation. Serine starvation causes ribosomes to pause on specific serine codons, leading to a decrease in the translation rate of sinR , which encodes a master repressor for biofilm matrix genes and ultimately triggers biofilm induction. How serine levels change in different growth stages, how B. subtilis regulates intracellular serine levels, and how serine starvation triggers ribosomes to pause on selective serine codons remain unknown. Here, we show that serine levels decrease as cells enter stationary phase and that unlike most other amino acid biosynthesis genes, expression of serine biosynthesis genes decreases upon the transition into stationary phase. The deletion of the gene for a serine deaminase responsible for converting serine to pyruvate led to a delay in biofilm formation, further supporting the idea that serine levels are a critical intracellular signal for biofilm activation. Finally, we show that levels of all five serine tRNA isoacceptors are decreased in stationary phase compared with exponential phase. However, the three isoacceptors recognizing UCN serine codons are reduced to a much greater extent than the two that recognize AGC and AGU serine codons. Our findings provide evidence for a link between serine homeostasis and biofilm development in B. subtilis . IMPORTANCE In Bacillus subtilis , biofilm formation is triggered in response to environmental and cellular signals. It was proposed that serine limitation acts as a proxy for nutrient status and triggers biofilm formation at the onset of biofilm entry through a novel signaling mechanism caused by global ribosome pausing on selective serine codons. In this study, we reveal that serine levels decrease at the biofilm entry due to catabolite control and a serine shunt mechanism. We also show that levels of five serine tRNA isoacceptors are differentially decreased in stationary phase compared with exponential phase; three isoacceptors recognizing UCN serine codons are reduced much more than the two recognizing AGC and AGU codons. This finding indicates a possible mechanism for selective ribosome pausing. 
    more » « less
  4. Chemotaxis systems enable microbes to sense their immediate environment, moving towards beneficial stimuli and away from those that are harmful. In an effort to better understand the chemotaxis system of Sinorhizobium meliloti , a symbiont of the legume alfalfa, the cellular stoichiometries of all ten chemotaxis proteins in S. meliloti were determined. A combination of quantitative immunoblot and mass spectrometry revealed that the protein stoichiometries in S. meliloti varied greatly from those in Escherichia coli and Bacillus subtilis . To compare protein ratios to other systems, values were normalized to the central kinase CheA. All S. meliloti chemotaxis proteins exhibited increased ratios to varying degrees. The ten-fold higher molar ratio of adaptor proteins CheW1 and CheW2 to CheA might result in the formation of rings in the chemotaxis array that only consist of CheW instead of CheA and CheW in a 1:1 ratio. We hypothesize that the higher ratio of CheA to the main response regulator CheY2 is a consequence of the speed-variable motor in S. meliloti , instead of a switch-type motor. Similarly, proteins involved in signal termination are far more abundant in S. meliloti , which utilizes a phosphate-sink mechanism based on CheA retro-phosphorylation to inactivate the motor response regulator versus CheZ-catalyzed dephosphorylation as in E. coli and B. subtilis . Finally, the abundance of CheB and CheR, which regulate chemoreceptor methylation, was increased when compared to CheA, indicative of variations in the adaptation system of S. meliloti . Collectively, these results mark significant differences in the composition of bacterial chemotaxis systems. IMPORTANCE The symbiotic soil bacterium Sinorhizobium meliloti contributes greatly to host-plant growth by fixing atmospheric nitrogen. The provision of nitrogen as ammonium by S. meliloti leads to increased biomass production of its legume host alfalfa and diminishes the use of environmentally harmful chemical fertilizers. To better understand the role of chemotaxis in host-microbe interaction, a comprehensive catalogue of the bacterial chemotaxis system is vital, including its composition, function, and regulation. The stoichiometry of chemotaxis proteins in S. meliloti has very few similarities to the systems in E. coli and B. subtilis . In addition, total amounts of proteins are significantly lower. S. meliloti exhibits a chemotaxis system distinct from known models by incorporating new proteins as exemplified by the phosphate sink mechanism. 
    more » « less
  5. Parsek, Matthew (Ed.)
    ABSTRACT Many bacterial species typically live in complex three-dimensional biofilms, yet much remains unknown about differences in essential processes between nonbiofilm and biofilm lifestyles. Here, we created a CRISPR interference (CRISPRi) library of knockdown strains covering all known essential genes in the biofilm-forming Bacillus subtilis strain NCIB 3610 and investigated growth, biofilm colony wrinkling, and sporulation phenotypes of the knockdown library. First, we showed that gene essentiality is largely conserved between liquid and surface growth and between two media. Second, we quantified biofilm colony wrinkling using a custom image analysis algorithm and found that fatty acid synthesis and DNA gyrase knockdown strains exhibited increased wrinkling independent of biofilm matrix gene expression. Third, we designed a high-throughput screen to quantify sporulation efficiency after essential gene knockdown; we found that partial knockdowns of essential genes remained competent for sporulation in a sporulation-inducing medium, but knockdown of essential genes involved in fatty acid synthesis exhibited reduced sporulation efficiency in LB, a medium with generally lower levels of sporulation. We conclude that a subset of essential genes are particularly important for biofilm structure and sporulation/germination and suggest a previously unappreciated and multifaceted role for fatty acid synthesis in bacterial lifestyles and developmental processes. IMPORTANCE For many bacteria, life typically involves growth in dense, three-dimensional communities called biofilms that contain cells with differentiated roles held together by extracellular matrix. To examine how essential gene function varies between vegetative growth and the developmental states of biofilm formation and sporulation, we created and screened a comprehensive library of strains using CRISPRi to knockdown expression of each essential gene in the biofilm-capable Bacillus subtilis strain 3610. High-throughput assays and computational algorithms identified a subset of essential genes involved in biofilm wrinkling and sporulation and indicated that fatty acid synthesis plays important and multifaceted roles in bacterial development. 
    more » « less