skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 20, 2026

Title: Biophysical modeling reveals the transcriptional regulatory mechanism of Spo0A, the master regulator in starving Bacillus subtilis
ABSTRACT In starvingBacillus subtilisbacteria,the initiation of two survival programs—biofilm formation and sporulation—is controlled by the same phosphorylated master regulator, Spo0A~P. Its gene,spo0A,is transcribed from two promoters, Pvand Ps,that are, respectively, regulated by RNA polymerase (RNAP) holoenzymes bearing σAand σH. Notably, transcription is directly autoregulated by Spo0A~P binding sites known as 0A1, 0A2, and 0A3 box, located in between the two promoters. It remains unclear whether, at the onset of starvation, these boxes activate or repressspo0Aexpression, and whether the Spo0A~P transcriptional feedback plays a role in the increase inspo0Aexpression. Based on the experimental data of the promoter activities under systematic perturbation of the promoter architecture, we developed a biophysical model of transcriptional regulation ofspo0Aby Spo0A~P binding to each of the 0A boxes. The model predicts that Spo0A~P binding to its boxes does not affect the RNAP recruitment to the promoters but instead affects the transcriptional initiation rate. Moreover, the effects of Spo0A~P binding to 0A boxes are mainly repressive and saturated early at the onset of starvation. Therefore, the increase inspo0Aexpression is mainly driven by the increase in RNAP holoenzyme levels. Additionally, we reveal that Spo0A~P affinity to 0A boxes is strongest at 0A3 and weakest at 0A2 and that there are attractive forces between the occupied 0A boxes. Our findings, in addition to clarifying how the sporulation master regulator is controlled, offer a framework to predict regulatory outcomes of complex gene-regulatory mechanisms. IMPORTANCECell differentiation is often critical for survival. In bacteria, differentiation decisions are controlled by transcriptional master regulators under transcriptional feedback control. Therefore, understanding how master regulators are transcriptionally regulated is required to understand differentiation. However, in many cases, the underlying regulation is complex, with multiple transcription factor binding sites and multiple promoters, making it challenging to dissect the exact mechanisms. Here, we address this problem for theBacillus subtilismaster regulator Spo0A. Using a biophysical model, we quantitatively characterize the effect of individual transcription factor binding sites on eachspo0Apromoter. Furthermore, the model allows us to identify the specific transcription step that is affected by transcription factor binding. Such a model is promising for the quantitative study of a wide range of master regulators involved in transcriptional feedback.  more » « less
Award ID(s):
2019745
PAR ID:
10597090
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Svensson, Sarah L
Publisher / Repository:
American Society for Microbiology
Date Published:
Journal Name:
mSystems
Volume:
10
Issue:
5
ISSN:
2379-5077
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kovács, Ákos T. (Ed.)
    ABSTRACT In Bacillus subtilis , master regulator Spo0A controls several cell-differentiation pathways. Under moderate starvation, phosphorylated Spo0A (Spo0A~P) induces biofilm formation by indirectly activating genes controlling matrix production in a subpopulation of cells via an SinI-SinR-SlrR network. Under severe starvation, Spo0A~P induces sporulation by directly and indirectly regulating sporulation gene expression. However, what determines the heterogeneity of individual cell fates is not fully understood. In particular, it is still unclear why, despite being controlled by a single master regulator, biofilm matrix production and sporulation seem mutually exclusive on a single-cell level. In this work, with mathematical modeling, we showed that the fluctuations in the growth rate and the intrinsic noise amplified by the bistability in the SinI-SinR-SlrR network could explain the single-cell distribution of matrix production. Moreover, we predicted an incoherent feed-forward loop; the decrease in the cellular growth rate first activates matrix production by increasing in Spo0A phosphorylation level but then represses it via changing the relative concentrations of SinR and SlrR. Experimental data provide evidence to support model predictions. In particular, we demonstrate how the degree to which matrix production and sporulation appear mutually exclusive is affected by genetic perturbations. IMPORTANCE The mechanisms of cell-fate decisions are fundamental to our understanding of multicellular organisms and bacterial communities. However, even for the best-studied model systems we still lack a complete picture of how phenotypic heterogeneity of genetically identical cells is controlled. Here, using B. subtilis as a model system, we employ a combination of mathematical modeling and experiments to explain the population-level dynamics and single-cell level heterogeneity of matrix gene expression. The results demonstrate how the two cell fates, biofilm matrix production and sporulation, can appear mutually exclusive without explicitly inhibiting one another. Such a mechanism could be used in a wide range of other biological systems. 
    more » « less
  2. Salama, Nina R (Ed.)
    ABSTRACT Flagella are complex, trans-envelope nanomachines that localize in species-specific patterns on the cell surface. Here, we study the localization dynamics of the earliest stage of basal body formation inBacillus subtilisusing a fluorescent fusion to the C-ring protein FliM. We find thatB. subtilisbasal bodies do not exhibit dynamic subunit exchange and are largely stationary at steady state, consistent with flagellar assembly through the peptidoglycan (PG). However, rare mobile basal bodies were observed, and the prevalence of mobile basal bodies is elevated both early in basal body assembly and when the rod is mutated. Thus, basal body mobility is a precursor to patterning, and we propose that rod polymerization probes the PG superstructure for pores of sufficient diameter to permit rod transit. Furthermore, mutation of the rod disrupts basal body patterning in a way that phenocopies mutation of the cytoplasmic flagellar patterning protein FlhF. We infer that rod synthesis and the cytoplasmic regulators coordinate flagellar assembly by interpreting a grid-like pattern of pores, pre-existent in the PG. IMPORTANCEBacteria insert flagella in a species-specific pattern on the cell body, but how patterns are achieved is poorly understood. In bacteria with a single polar flagellum, a marker protein localizes to the cell pole and nucleates the assembly of the flagellum at that site.Bacillus subtilisassembles ~25 basal bodies over the length of the cell in a grid-like pattern and lacks proteins required for their polar targeting. Here, we show thatB. subtilisbasal bodies are mobile soon after assembly and become immobilized when the flagellar rod transits the peptidoglycan (PG) wall. Moreover, defects in the flagellar rod lead to a more-random distribution of flagella and an increase in polar basal bodies. We conclude that the peritrichous patterning of flagella ofB. subtilisis different from the polar patterning of other bacteria, and we infer that theB. subtilisrod probes the PG for holes that can accommodate the machine. 
    more » « less
  3. Sporulation is a survival mechanism employed by Firmicutes, includingBacillus subtilis, when facing stressful conditions of growth (e.g., starvation). In this bacterium, the transcription repair coupling factor, Mfd, has been shown to play pivotal roles in sporulation transcription-coupled DNA repair and stress-associated mutagenesis. Recent studies have also revealed an unexpected role of Mfd in regulating gene expression duringB. subtilissporulation. This study examines the effects ofB. subtilisMfd deficiency on the expression of sporulation genes, sporulation efficiency, and spore morphology. In the absence of exogenous DNA damage, we found that Mfd deficiency does not compromise spore germination outgrowth; however, the loss of this factor promoted spore morphological defects and decreased sporulation efficiency. Also, our results confirmed an anomalous pattern of expression of sporulation genes in cells lacking Mfd. These results showed that Mfd influences bacterial physiology beyond DNA repair of actively transcribed genes. 
    more » « less
  4. Goldman, Gustavo H (Ed.)
    ABSTRACT Infections caused by the emerging pathogenic yeastClavispora (Candida) lusitaniaecan be difficult to manage due to multi-drug resistance. Resistance to the frontline antifungal fluconazole (FLZ) inCandidaspp. is commonly acquired through gain-of-function (GOF) mutations in the gene encoding the transcription factor Mrr1. These activated Mrr1 variants enhance FLZ efflux via upregulation of the multi-drug transporter geneMDR1. Recently, it was reported that, unlike in the well-studiedCandida albicansspecies,C. lusitaniaeandCandida parapsilosiswith activated Mrr1 also have high expression ofCDR1, which encodes another multi-drug transporter with overlapping but distinct transported substrate profiles and Cdr1-dependent FLZ resistance. To better understand the mechanisms of Mrr1 regulation ofMDR1andCDR1, and other co-regulated genes, we performed Cleavage Under Targets and Release Using Nuclease (CUT&RUN) analysis of Mrr1 binding sites. Mrr1 bound the promoter regions ofMDR1andCDR1, as well asFLU1, which encodes another transporter capable of FLZ efflux. Mdr1 and Cdr1 independently contributed to the decreased susceptibility of theMRR1GOFstrains against diverse clinical azoles and other antifungals, including 5-flucytosine. A consensus motif, CGGAGWTAR, enriched in Mrr1-boundC. lusitaniaeDNA was also conserved upstream ofMDR1andCDR1across species, includingC. albicans. CUT&RUN and RNA-seq data were used to define the Mrr1 regulon, which includes genes involved in transport, stress response, and metabolism. Activated and inducible Mrr1 bound similar regions in the promoters of Mrr1 regulon genes. Our studies provide new evolutionary insights into the coordinated regulation of multi-drug transporters and potential mechanism(s) that aid secondary resistance acquisition in emergingCandida. IMPORTANCEUnderstanding antifungal resistance in emergingCandidapathogens is essential to managing treatment failures and guiding the development of new therapeutic strategies. Like otherCandidaspecies, the environmental opportunistic fungal pathogenClavispora(Candida)lusitaniaecan acquire resistance to the antifungal fluconazole by overexpression of the multi-drug efflux pump Mdr1 through gain-of-function (GOF) mutations in the gene encoding the transcription factor Mrr1. Here, we show thatC. lusitaniaeMrr1 also directly regulatesCDR1, another major multi-drug transporter gene, along withMDR1. In strains with activated Mrr1, upregulation ofMDR1andCDR1protects against diverse antifungals, potentially aiding the rise of other resistance mutations. Mrr1 also regulates several stress response and metabolism genes, thereby providing new perspectives into the physiology of drug-resistant strains. The identification of an Mrr1 binding motif that is conserved across strains and species will advance future efforts to understand multi-drug resistance acrossCandidaspecies. 
    more » « less
  5. Zhulin, Igor B. (Ed.)
    ABSTRACT In Bacillus subtilis , biofilm and sporulation pathways are both controlled by a master regulator, Spo0A, which is activated by phosphorylation via a phosphorelay—a cascade of phosphotransfer reactions commencing with autophosphorylation of histidine kinases KinA, KinB, KinC, KinD, and KinE. However, it is unclear how the kinases, despite acting via the same regulator, Spo0A, differentially regulate downstream pathways, i.e., how KinA mainly activates sporulation genes and KinC mainly activates biofilm genes. In this work, we found that KinC also downregulates sporulation genes, suggesting that KinC has a negative effect on Spo0A activity. To explain this effect, with a mathematical model of the phosphorelay, we revealed that unlike KinA, which always activates Spo0A, KinC has distinct effects on Spo0A at different growth stages: during fast growth, KinC acts as a phosphate source and activates Spo0A, whereas during slow growth, KinC becomes a phosphate sink and contributes to decreasing Spo0A activity. However, under these conditions, KinC can still increase the population-mean biofilm matrix production activity. In a population, individual cells grow at different rates, and KinC would increase the Spo0A activity in the fast-growing cells but reduce the Spo0A activity in the slow-growing cells. This mechanism reduces single-cell heterogeneity of Spo0A activity, thereby increasing the fraction of cells that activate biofilm matrix production. Thus, KinC activates biofilm formation by controlling the fraction of cells activating biofilm gene expression. IMPORTANCE In many bacterial and eukaryotic systems, multiple cell fate decisions are activated by a single master regulator. Typically, the activities of the regulators are controlled posttranslationally in response to different environmental stimuli. The mechanisms underlying the ability of these regulators to control multiple outcomes are not understood in many systems. By investigating the regulation of Bacillus subtilis master regulator Spo0A, we show that sensor kinases can use a novel mechanism to control cell fate decisions. By acting as a phosphate source or sink, kinases can interact with one another and provide accurate regulation of the phosphorylation level. Moreover, this mechanism affects the cell-to-cell heterogeneity of the transcription factor activity and eventually determines the fraction of different cell types in the population. These results demonstrate the importance of intercellular heterogeneity for understanding the effects of genetic perturbations on cell fate decisions. Such effects can be applicable to a wide range of cellular systems. 
    more » « less