skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Magneto-acoustic oscillations observed in a solar plage region
Abstract We gave an extensive study for the quasi-periodic perturbations on the time profiles of the line of sight (LOS) magnetic field in 10 × 10 sub-areas in a solar plage region (corresponds to a facula on the photosphere). The perturbations are found to be associated with the enhancement of He I 10830 Å absorption in a moss region, which is connected to loops with million-degree plasma. FFT analysis to the perturbations gives a kind of spectrum similar to that of Doppler velocity: a number of discrete periods around 5 minutes. The amplitudes of the magnetic perturbations are found to be proportional to magnetic field strength over these sub-areas. In addition, magnetic perturbations lag behind a quarter of the cycle in the phase with respect to the p-mode Doppler velocity. We show that the relationships can be well explained with an MHD solution for the magneto-acoustic oscillations in high- β plasma. Observational analysis also shows that, for the two regions with the stronger and weaker magnetic field, the perturbations are always anti-phased. All findings show that the magnetic perturbations are actually magneto-acoustic oscillations on the solar surface, the photosphere, powered by p-mode oscillations. The findings may provide a new diagnostic tool for exploring the relationship between magneto-acoustic oscillations and the heating of the solar upper atmosphere, as well as their role in helioseismology.  more » « less
Award ID(s):
1821294
PAR ID:
10320738
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Research in Astronomy and Astrophysics
Volume:
21
Issue:
7
ISSN:
1674-4527
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this paper, we report the observed temporal correlation between extreme-ultraviolet (EUV) emission and magneto-acoustic oscillations in an EUV moss region, which is the footpoint region only connected by magnetic loops with million-degree plasma. The result is obtained from a detailed multi-wavelength data analysis of the region with the purpose of resolving fine-scale mass and energy flows that come from the photosphere, pass through the chromosphere and finally heat the solar transition region or the corona. The data set covers three atmospheric levels on the Sun, consisting of high-resolution broad-band imaging at TiO 7057 Å and the line of sight magnetograms for the photosphere, high-resolution narrow-band images at helium i 10830 Å for the chromosphere and EUV images at 171 Å for the corona. The 10830 Å narrow-band images and the TiO 7057 Å broad-band images are from a much earlier observation on 2012 July 22 with the 1.6 meter aperture Goode Solar Telescope (GST) at Big Bear Solar Observatory (BBSO) and the EUV 171 Å images and the magnetograms are from observations made by Atmospheric Imaging Assembly (AIA) or Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We report the following new phenomena: (1) Repeated injections of chromospheric material appearing as 10830 Å absorption are squirted out from inter-granular lanes with a period of ∼ 5 minutes. (2) EUV emissions are found to be periodically modulated with similar periods of ∼ 5 minutes. (3) Around the injection area where 10830 Å absorption is enhanced, both EUV emissions and strength of the magnetic field are remarkably stronger. (4) The peaks on the time profile of the EUV emissions are found to be in sync with oscillatory peaks of the stronger magnetic field in the region. These findings may give a series of strong evidences supporting the scenario that coronal heating is powered by magneto-acoustic waves. 
    more » « less
  2. Aims.Recurring jets are observed in the solar atmosphere. They can erupt intermittently over a long period of time. By the observation of intermittent jets, we wish to understand what causes the characteristics of the periodic eruptions. Methods.We report intermittent jets observed by the Goode Solar Telescope (GST) with the TiO Broadband Filter Imager (BFI), the Visible Imaging Spectrometer (VIS) in Hα, and the Near-InfraRed Imaging Spectropolarimeter (NIRIS). The analysis was aided and complemented by 1400 Å and 2796 Å data from the Interface Region Imaging Spectrograph (IRIS). These observational instruments allowed us to analyze the temporal characteristics of the jet events. By constructing the Hαdopplergrams, we found that the plasma first moves upward, but during the second phase of the jet, the plasma flows back. Working with time slice diagrams, we investigated the characteristics of the jet dynamics. Results.The jet continued for up to 4 h. The time-distance diagram shows that the peak of the jet has clear periodic-eruption characteristics (5 min) during 18:00 UT–18:50 UT. We also found a periodic brightening phenomenon (5 min) during the jet bursts in the observed bands in the transition region (1400 Å and 2796 Å), which may be a response to intermittent jets in the upper solar atmosphere. The time lag is 3 min. Evolutionary images in the TiO band revealed a horizontal movement of the granulation at the location of the jet. By comparison to the quiet region of the Sun, we found that the footpoint of the jet is enhanced at the center of the Hαspectral line profile, without significant changes in the line wings. This suggests prolonged heating at the footpoint of the jet. In the mixed-polarity magnetic field region of the jet, we observed the emergence of magnetic flux, its cancellation, and shear, indicating possible intermittent magnetic reconnection. This is confirmed by the nonlinear force-free field model, which was reconstructed using the magneto-friction method. Conclusions.The multiwavelength analysis indicates that the events we studied were triggered by magnetic reconnection that was caused by mixed-polarity magnetic fields. We suggest that the horizontal motion of the granulation in the photosphere drives the magnetic reconnection, which is modulated byp-mode oscillations. 
    more » « less
  3. Abstract The present study provides an evidence for the generation of harmonics of magnetosonic waves in the Martian magnetosheath region. The wave signatures are manifested in the magnetic field measurements recorded by the fluxgate magnetometer instrument onboard the Mars Atmosphere and Volatile Evolution missioN (MAVEN) spacecraft in the dawn sector around 5–10 LT at an altitude of 4,000–6,000 kms. The wave that is observed continuously from 19.1 to 20.7 UT below the proton cyclotron frequency (fci ≈ 46 mHz) is identified as fundamental mode of the magnetosonic wave. Whereas harmonics of the magnetosonic wave are observed during 19.7–20.3 UT at frequencies that are multiple offci. The ambient solar wind proton density and plasma flow velocity are found to vary with a fundamental mode frequency of 46 mHz. It is noticed that the fundamental mode is mainly associated with the left‐hand (LH), and higher frequency harmonics are associated with the right‐hand (RH) circular polarizations. A clear difference in the polarization and ellipticity is noticed during the time of occurrence of harmonics. The magnetosonic wave harmonics are found to propagate in the quasi‐perpendicular directions to the ambient magnetic field. The results of linear theory and Particle‐In‐Cell simulation performed here are in agreement with the observations. The present study provides a conclusive evidence for the occurrence of harmonics of magnetosonic wave in the close vicinity of the magnetosheath region of the unmagnetized planet Mars. 
    more » « less
  4. Magnetic fields influence ion transport in plasmas. Straightforward comparisons of experimental measurements with plasma theories are complicated when the plasma is inhomogeneous, far from equilibrium, or characterized by strong gradients. To better understand ion transport in a partially magnetized system, we study the hydrodynamic velocity and temperature evolution in an ultracold neutral plasma at intermediate values of the magnetic field. We observe a transverse, radial breathing mode that does not couple to the longitudinal velocity. The inhomogeneous density distribution gives rise to a shear velocity gradient that appears to be only weakly damped. This mode is excited by ion oscillations originating in the wings of the distribution where the plasma becomes non-neutral. The ion temperature shows evidence of an enhanced electron-ion collision rate in the presence of the magnetic field. Ultracold neutral plasmas provide a rich system for studying mode excitation and decay. 
    more » « less
  5. Observations of Type III radio bursts discovered that electron beams with power-law energy spectra are commonly produced during solar flares. The locations of these electron beams are ~ 300 Mm above the particle acceleration region of the photosphere, and the velocities range from 3 to 10 times the local background electron thermal velocity. However, the mechanism that can commonly produce electron beams during the propagation of energetic electrons with power-law energy spectra in the corona remains unclear. In this paper, using kinetic transport theory, we find for the first time that the magnetic focusing effect governs the formation of electron beams over the observational desired distance in the corona. The magnetic focusing effect can sharply increase the bulk velocity of energetic electrons to the observed electron beam velocity within 0.4 solar radii (300 Mm) as they escape from the acceleration region and propagate upward along magnetic field lines. In more rapidly decreasing magnetic fields, energetic electrons with a harder power-law energy spectrum can generate a higher bulk velocity, producing type III radio bursts at a location much closer to the acceleration region. During propagation, the spectral index of the energetic electrons is unchanged. 
    more » « less