skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: First Observation of Harmonics of Magnetosonic Waves in Martian Magnetosheath Region
Abstract The present study provides an evidence for the generation of harmonics of magnetosonic waves in the Martian magnetosheath region. The wave signatures are manifested in the magnetic field measurements recorded by the fluxgate magnetometer instrument onboard the Mars Atmosphere and Volatile Evolution missioN (MAVEN) spacecraft in the dawn sector around 5–10 LT at an altitude of 4,000–6,000 kms. The wave that is observed continuously from 19.1 to 20.7 UT below the proton cyclotron frequency (fci ≈ 46 mHz) is identified as fundamental mode of the magnetosonic wave. Whereas harmonics of the magnetosonic wave are observed during 19.7–20.3 UT at frequencies that are multiple offci. The ambient solar wind proton density and plasma flow velocity are found to vary with a fundamental mode frequency of 46 mHz. It is noticed that the fundamental mode is mainly associated with the left‐hand (LH), and higher frequency harmonics are associated with the right‐hand (RH) circular polarizations. A clear difference in the polarization and ellipticity is noticed during the time of occurrence of harmonics. The magnetosonic wave harmonics are found to propagate in the quasi‐perpendicular directions to the ambient magnetic field. The results of linear theory and Particle‐In‐Cell simulation performed here are in agreement with the observations. The present study provides a conclusive evidence for the occurrence of harmonics of magnetosonic wave in the close vicinity of the magnetosheath region of the unmagnetized planet Mars.  more » « less
Award ID(s):
2203321
PAR ID:
10586914
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AGU/Wiley
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
129
Issue:
7
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present statistical distributions of whistler‐mode chorus and hiss waves at frequencies ranging from the local proton gyrofrequency to the equatorial electron gyrofrequency (fce,eq) in Jupiter's magnetosphere based on Juno measurements. The chorus wave power spectral densities usually follow thefce,eqvariation with major wave power concentrated in the 0.05fce,eq–fce,eqfrequency range. The hiss wave frequencies are less dependent onfce,eqvariation than chorus with major power concentrated below 0.05fce,eq, showing a separation from chorus atM < 10. Our survey indicates that chorus waves are mainly observed at 5.5 < M < 13 from the magnetic equator to 20° latitude, consistent with local wave generation near the equator and damping effects. The hiss wave powers extend to 50° latitude, suggesting longer wave propagation paths without attenuation. Our survey also includes the whistler‐mode waves at high latitudes which may originate from the Io footprint, auroral hiss, or propagating hiss waves reflected to highMshells. 
    more » « less
  2. Abstract The present study uncovers the fine structures of magnetosonic waves by investigating the EFW waveforms measured by Van Allen Probes. We show that each harmonic of the magnetosonic wave may consist of a series of elementary rising‐tone emissions, implying a nonlinear mechanism for the wave generation. By investigating an elementary rising‐tone magnetosonic wave that spans a wide frequency range, we show that the frequency sweep rate is likely proportional to the wave frequency. We studied compound rising‐tone magnetosonic waves, and found that they typically consist of multiple harmonics in the source region, and may gradually become continuous in frequency as they propagate away from source. Both elementary and compound rising‐tone magnetosonic waves last for ∼1 min which is close to the bounce period of the ring proton distribution, but their relation is not fully understood. 
    more » « less
  3. Abstract The collisionless nature of planetary magnetospheres means that electromagnetic forces are fundamental in controlling the flow of energy and momentum through these systems. We use Pioneer Venus Orbiter (PVO) observations to demonstrate that the magnetic pumping process can be active at Venus, in analogy to its recent discovery at Mars. The presented case study demonstrates the framework for how the process can work at Venus, and the results of a statistical analysis show that the ambient plasma conditions support the process being active. Magnetic pumping enables low frequency magnetosonic waves to heat ambient ionospheric electrons and provides a mechanism that couples the solar wind to the Venusian ionosphere. This is the first time the magnetic pumping process has been discussed at Venus. 
    more » « less
  4. Various high-frequency waves in the vicinity of upper-hybrid and Langmuir frequencies are commonly observed in different space plasma environments. Such waves and fluctuations have been reported in the magnetosphere of the Earth, a planet with an intrinsic strong magnetic field. Mars has no intrinsic magnetic field and, instead, it possesses a weak induced magnetosphere, which is highly dynamic due to direct exposure to the solar wind. In the present paper, we investigate the presence of high-frequency plasma waves in the Martian plasma environment by making use of the high-resolution electric field data from the Mars Atmosphere and Volatile Evolution missioN (MAVEN) spacecraft. Aims. This study aims to provide conclusive observational evidence of the occurrence of high-frequency plasma waves around the electron plasma frequency in the Martian magnetosphere. We observe two distinct wave modes with frequency below and above the electron plasma frequency. The characteristics of these high-frequency waves are quantified and presented here. We discuss the generation of possible wave modes by taking into account the ambient plasma parameters in the region of observation. Methods. We have made use of the medium frequency (100 Hz–32 kHz) burst mode-calibrated electric field data from the Langmuir Probe and Waves instrument on board NASA’s MAVEN mission. Due to the weak magnetic field strength, the electron gyro-frequency is much lower than the electron plasma frequency, which implies that the upper-hybrid and Langmuir waves have comparable frequencies. A total of 19 wave events with wave activities around electron plasma frequency were identified by examining high-resolution spectrograms of the electric field. Results. These waves were observed around 5 LT when MAVEN crossed the magnetopause boundary and entered the magnetosheath region. These waves are either a broadband- or narrowband-type with distinguishable features in the frequency domain. The narrowband-type waves have spectral peak above the electron plasma frequency. However, in the case of broadband-type waves, the spectral peak always occurred below the electron plasma frequency. The broadband waves consistently show a periodic modulation of 8–14 ms. Conclusions. The high-frequency narrowband-type waves observed above the electron plasma frequency are believed to be associated with upper-hybrid or Langmuir waves. However, the physical mechanism responsible for the generation of broadband-type waves and the associated 8–14 ms modulation remain unexplained and further investigation is required. 
    more » « less
  5. Abstract Employing a quartz crystal microbalance (QCM) as a MHz‐viscoelastic sensor requires extracting information from higher harmonics beyond the Sauerbrey limit, which can be problematic for rubbery polymer films that are highly dissipative because of the onset of anharmonic side bands and film resonance. Data analysis for QCM can frequently obscure the underlying physics or involve approximations that tend to break down at higher harmonics. In this study, modern computational tools are leveraged to solve a continuum physics model for the QCM's acoustic shear wave propagation through a polymer film with zero approximations, retaining the physical intuition of how the experimental signal connects to the shear modulus of the material. The resulting set of three coupled equations are solved numerically to fit experimental data for the resonance frequency Δfnand dissipation ΔΓnshifts as a function of harmonic numbern, over an extended harmonic range approaching film resonance. This allows the frequency‐dependent modulus of polymer films at MHz frequencies, modeled as linear on a log–log scale, to be determined for rubbery polybutadiene (PB) and polydimethylsiloxane (PDMS) films, showing excellent agreement with time–temperature shifted rheometry data from the literature. 
    more » « less