skip to main content


Title: Mechanotransduction-on-chip: vessel-chip model of endothelial YAP mechanobiology reveals matrix stiffness impedes shear response
Endothelial mechanobiology is a key consideration in the progression of vascular dysfunction, including atherosclerosis. However mechanistic connections between the clinically associated physical stimuli, vessel stiffness and shear stress, and how they interact to modulate plaque progression remain incompletely characterized. Vessel-chip systems are excellent candidates for modeling vascular mechanobiology as they may be engineered from the ground up, guided by the mechanical parameters present in human arteries and veins, to recapitulate key features of the vasculature. Here, we report extensive validation of a vessel-chip model of endothelial yes-associated protein (YAP) mechanobiology, a protein sensitive to both matrix stiffness and shearing forces and, importantly, implicated in atherosclerotic progression. Our model captures the established endothelial mechanoresponse, with endothelial alignment, elongation, reduction of adhesion molecules, and YAP cytoplasmic retention under high laminar shear. Conversely, we observed disturbed morphology, inflammation, and nuclear partitioning under low, high, and high oscillatory shear. Examining targets of YAP transcriptional co-activation, connective tissue growth factor (CTGF) is strongly downregulated by high laminar shear, whereas it is strongly upregulated by low shear or oscillatory flow. Ankyrin repeat domain 1 (ANKRD1) is only upregulated by high oscillatory shear. Verteporfin inhibition of YAP reduced the expression of CTGF but did not affect ANKRD1. Lastly, substrate stiffness modulated the endothelial shear mechanoresponse. Under high shear, softer substrates showed the lowest nuclear localization of YAP whereas stiffer substrates increased nuclear localization. Low shear strongly increased nuclear localization of YAP across stiffnesses. Together, we have validated a model of endothelial mechanobiology and describe a clinically relevant biological connection between matrix stiffness, shear stress, and endothelial activation via YAP mechanobiology.  more » « less
Award ID(s):
1944322
NSF-PAR ID:
10320742
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Lab on a Chip
Volume:
21
Issue:
9
ISSN:
1473-0197
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Clinically serious congenital heart valve defects arise from improper growth and remodeling of endocardial cushions into leaflets. Genetic mutations have been extensively studied but explain less than 20% of cases. Mechanical forces generated by beating hearts drive valve development, but how these forces collectively determine valve growth and remodeling remains incompletely understood. Here, we decouple the influence of those forces on valve size and shape, and study the role of YAP pathway in determining the size and shape. The low oscillatory shear stress promotes YAP nuclear translocation in valvular endothelial cells (VEC), while the high unidirectional shear stress restricts YAP in cytoplasm. The hydrostatic compressive stress activated YAP in valvular interstitial cells (VIC), whereas the tensile stress deactivated YAP. YAP activation by small molecules promoted VIC proliferation and increased valve size. Whereas YAP inhibition enhanced the expression of cell-cell adhesions in VEC and affected valve shape. Finally, left atrial ligation was performed in chick embryonic hearts to manipulate the shear and hydrostatic stress in vivo. The restricted flow in the left ventricle induced a globular and hypoplastic left atrioventricular (AV) valves with an inhibited YAP expression. By contrast, the right AV valves with sustained YAP expression grew and elongated normally. This study establishes a simple yet elegant mechanobiological system by which transduction of local stresses regulates valve growth and remodeling. This system guides leaflets to grow into proper sizes and shapes with the ventricular development, without the need of a genetically prescribed timing mechanism. 
    more » « less
  2. Abstract

    The human brain microvasculature is constantly exposed to variable fluid flow regimes and their influence on the endothelium depends in part on the synchronous cooperative behavior between cell–cell junctions and the cytoskeleton. In this study, we exposed human cerebral microvascular endothelial cells to a low laminar flow (1 dyne⋅cm−2), high laminar flow (10 dyne⋅cm−2), low oscillatory flow (±1 dyne⋅cm−2), or high oscillatory flow (±10 dyne⋅cm−2) for 24 hr. After this time, endothelial cell–cell junction and cytoskeletal structural response was characterized through observation of zonula occludens‐1 (ZO‐1), claudin‐5, junctional adhesion molecule‐A (JAM‐A), vascular endothelial cadherin (VE‐Cad), and F‐actin. In addition, we also characterized cell morphology through measurement of cell area and cell eccentricity. Our results revealed the greatest change in junctional structure reorganization for ZO‐1 and JAM‐A to be observed under low laminar flow conditions while claudin‐5 exhibited the greatest change in structural reorganization under both low and high laminar flow conditions. However, VE‐Cad displayed the greatest structural response under a high laminar flow, reflecting the unique responses each cell–cell junction protein had to each fluid flow regime. In addition, cell area and cell eccentricity displayed most significant changes under the high laminar flow and low oscillatory flow, respectively. We believe this study will be useful to the field of cell mechanics and mechanobiology.

     
    more » « less
  3. Abstract

    Tumor progression relies on the interaction between neoplastic epithelial cells and their surrounding stromal partners. This cell cross‐talk affects stromal development, and ultimately the heterogeneity impacts drug efficacy. To mimic this evolving paradigm, 3D vascularized pancreatic adenocarcinoma tissue is microengineered in a tri‐culture system composed of patient‐derived pancreatic organoids, human fibroblasts, and endothelial cells on a perfusable platform, situated in a 96‐well plate. Through synergistic engineering, the benefits of cellular fidelity of patient tumor organoids are combined with the flow control of an organ‐on‐a‐chip platform. Validation of this platform includes demonstrating the growth of pancreatic tumor organoids by monitoring the change in metabolic activity of the tissue. Investigation of the tumor microenvironment highlights the role of fibroblasts in symbiosis with patient organoids, resulting in a six‐fold increase of collagen deposition and corresponding increase in tissue stiffness in comparison to fibroblast free controls. The value of a perfusable vascular network is evident in drug screening, as perfusing gemcitabine into stiffened matrix does not show the dose‐dependent effects on decrease in tumor viability as those under static conditions. These findings demonstrate the importance of a dynamic synergistic relationship between patient cells with stromal fibroblasts, in a 3D perfused vascular network, to accurately recapitulate a dynamic tumor microenvironment.

     
    more » « less
  4. The lymphatic vascular function is regulated by pulsatile shear stresses through signaling mediated by intracellular calcium [Ca 2+ ] i . Further, the intracellular calcium dynamics mediates signaling between lymphatic endothelial cells (LECs) and muscle cells (LMCs), including the lymphatic tone and contractility. Although calcium signaling has been characterized on LEC monolayers under uniform or step changes in shear stress, these dynamics have not been revealed in LMCs under physiologically-relevant co-culture conditions with LECs or under pulsatile flow. In this study, a cylindrical organ-on-chip platform of the lymphatic vessel (Lymphangion-Chip) consisting of a lumen formed with axially-aligned LECs co-cultured with transversally wrapped layers of LMCs was exposed to step changes or pulsatile shear stress, as often experienced in vivo physiologically or pathologically. Through real-time analysis of intracellular calcium [Ca 2+ ] i release, the device reveals the pulsatile shear-dependent biological coupling between LECs and LMCs. Upon step shear, both cell types undergo a relatively rapid rise in [Ca 2+ ] i followed by a gradual decay. Importantly, under pulsatile flow, analysis of the calcium signal also reveals a secondary sinusoid within the LECs and LMCs that is very close to the flow frequency. Finally, LMCs directly influence the LEC calcium dynamics both under step changes in shear and under pulsatile flow, demonstrating a coupling of LEC–LMC signaling. In conclusion, the Lymphangion-Chip is able to illustrate that intracellular calcium [Ca 2+ ] i in lymphatic vascular cells is dependent on pulsatile shear rate and therefore, serves as an analytical biomarker of mechanotransduction within LECs and LMCs, and functional consequences. 
    more » « less
  5. Discher, Dennis (Ed.)
    Vascular endothelial cells (ECs) have been shown to be mechanoresponsive to the forces of blood flow, including fluid shear stress (FSS), the frictional force of blood on the vessel wall. Recent reports have shown that FSS induces epigenetic changes in chromatin. Epigenetic changes, such as methylation and acetylation of histones, not only affect gene expression but also affect chromatin condensation, which can alter nuclear stiffness. Thus, we hypothesized that changes in chromatin condensation may be an important component for how ECs adapt to FSS. Using both in vitro and in vivo models of EC adaptation to FSS, we observed an increase in histone acetylation and a decrease in histone methylation in ECs adapted to flow as compared with static. Using small molecule drugs, as well as vascular endothelial growth factor, to change chromatin condensation, we show that decreasing chromatin condensation enables cells to more quickly align to FSS, whereas increasing chromatin condensation inhibited alignment. Additionally, we show data that changes in chromatin condensation can also prevent or increase DNA damage, as measured by phosphorylation of γH2AX. Taken together, these results indicate that chromatin condensation, and potentially by extension nuclear stiffness, is an important aspect of EC adaptation to FSS. 
    more » « less