Abstract We propose an analytic dual-cone accretion model for horizon-scale images of the cores of low-luminosity active galactic nuclei, including those observed by the Event Horizon Telescope (EHT). Our model is of synchrotron emission from an axisymmetric, magnetized plasma, constrained to flow within two oppositely oriented cones that are aligned with the black hole’s spin axis. We show this model can accurately reproduce images of a variety of time-averaged general relativistic magnetohydrodynamic simulations and that it accurately recovers the black hole spin, orientation, emission scale height, peak emission radius, and fluid flow direction from these simulations within a Bayesian inference framework using radio interferometric data. We show that nontrivial topologies in the images of relativistic accretion flows around black holes can result in nontrivial multimodal solutions when applied to observations with a sparse array, such as the EHT 2017 observations of M87*. The presence of these degeneracies underscores the importance of employing Bayesian techniques to adequately sample the posterior space for the interpretation of EHT measurements. We fit our model to the EHT observations of M87* and find a 95% highest posterior density interval for the mass-to-distance ratio ofθg∈ (2.84, 3.75)μas, and give an inclination ofθo∈ (11°, 24°). These new measurements are consistent with mass measurements from the EHT and stellar dynamical estimates and with the spin axis inclination inferred from properties of the M87* jet.
more »
« less
Inference of Black Hole Fluid-Dynamics from Sparse Interferometric Measurements
We develop an approach to recover the underlying properties of fluid-dynamical processes from sparse measurements. We are motivated by the task of imaging the stochastically evolving environment surrounding black holes, and demonstrate how flow parameters can be estimated from sparse interferometric measurements used in radio astronomical imaging. To model the stochastic flow we use spatio-temporal Gaussian Random Fields (GRFs). The high dimensionality of the underlying source video makes direct representation via a GRF’s full covariance matrix intractable. In contrast, stochastic partial differential equations are able to capture correlations at multiple scales by specifying only local interaction coefficients. Our approach estimates the coefficients of a space-time diffusion equation that dictates the stationary statistics of the dynamical process. We analyze our approach on realistic simulations of black hole evolution and demonstrate its advantage over state-of-the-art dynamic black hole imaging techniques.
more »
« less
- Award ID(s):
- 2048237
- PAR ID:
- 10320783
- Date Published:
- Journal Name:
- IEEE/CVF International Conference on Computer Vision
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Measurements from the Event Horizon Telescope enabled the visualization of light emission around a black hole for the first time. So far, these measurements have been used to recover a 2D image under the assumption that the emission field is static over the period of acquisition. In this work, we propose BH-NeRF, a novel tomography approach that leverages gravitational lensing to recover the continuous 3D emission field near a black hole. Compared to other 3D reconstruction or tomography settings, this task poses two significant challenges: first, rays near black holes follow curved paths dictated by general relativity, and second, we only observe measurements from a single viewpoint. Our method captures the unknown emission field using a continuous volumetric function parameterized by a coordinate-based neural network, and uses knowledge of Keplerian orbital dynamics to establish correspondence between 3D points over time. Together, these enable BH-NeRF to recover accurate 3D emission fields, even in challenging situations with sparse measurements and uncertain orbital dynamics. This work takes the first steps in showing how future measurements from the Event Horizon Telescope could be used to recover evolving 3D emission around the supermassive black hole in our Galactic center.more » « less
-
Abstract We present the first Event Horizon Telescope (EHT) observations of Sagittarius A* (Sgr A*), the Galactic center source associated with a supermassive black hole. These observations were conducted in 2017 using a global interferometric array of eight telescopes operating at a wavelength of λ = 1.3 mm. The EHT data resolve a compact emission region with intrahour variability. A variety of imaging and modeling analyses all support an image that is dominated by a bright, thick ring with a diameter of 51.8 ± 2.3 μ as (68% credible interval). The ring has modest azimuthal brightness asymmetry and a comparatively dim interior. Using a large suite of numerical simulations, we demonstrate that the EHT images of Sgr A* are consistent with the expected appearance of a Kerr black hole with mass ∼4 × 10 6 M ⊙ , which is inferred to exist at this location based on previous infrared observations of individual stellar orbits, as well as maser proper-motion studies. Our model comparisons disfavor scenarios where the black hole is viewed at high inclination ( i > 50°), as well as nonspinning black holes and those with retrograde accretion disks. Our results provide direct evidence for the presence of a supermassive black hole at the center of the Milky Way, and for the first time we connect the predictions from dynamical measurements of stellar orbits on scales of 10 3 –10 5 gravitational radii to event-horizon-scale images and variability. Furthermore, a comparison with the EHT results for the supermassive black hole M87* shows consistency with the predictions of general relativity spanning over three orders of magnitude in central mass.more » « less
-
The Event Horizon Telescope image of the supermassive black hole in the galaxy M87 is dominated by a bright, unresolved ring. General relativity predicts that embedded within this image lies a thin “photon ring,” which is composed of an infinite sequence of self-similar subrings that are indexed by the number of photon orbits around the black hole. The subrings approach the edge of the black hole “shadow,” becoming exponentially narrower but weaker with increasing orbit number, with seemingly negligible contributions from high-order subrings. Here, we show that these subrings produce strong and universal signatures on long interferometric baselines. These signatures offer the possibility of precise measurements of black hole mass and spin, as well as tests of general relativity, using only a sparse interferometric array.more » « less
-
Abstract The Event Horizon Telescope (EHT) is a millimeter very long baseline interferometry (VLBI) array that has imaged the apparent shadows of the supermassive black holes M87* and Sagittarius A*. Polarimetric data from these observations contain a wealth of information on the black hole and accretion flow properties. In this work, we develop polarimetric geometric modeling methods for mm-VLBI data, focusing on approaches that fit data products with differing degrees of invariance to broad classes of calibration errors. We establish a fitting procedure using a polarimetric “m-ring” model to approximate the image structure near a black hole. By fitting this model to synthetic EHT data from general relativistic magnetohydrodynamic models, we show that the linear and circular polarization structure can be successfully approximated with relatively few model parameters. We then fit this model to EHT observations of M87* taken in 2017. In total intensity and linear polarization, the m-ring fits are consistent with previous results from imaging methods. In circular polarization, the m-ring fits indicate the presence of event-horizon-scale circular polarization structure, with a persistent dipolar asymmetry and orientation across several days. The same structure was recovered independently of observing band, used data products, and model assumptions. Despite this broad agreement, imaging methods do not produce similarly consistent results. Our circular polarization results, which imposed additional assumptions on the source structure, should thus be interpreted with some caution. Polarimetric geometric modeling provides a useful and powerful method to constrain the properties of horizon-scale polarized emission, particularly for sparse arrays like the EHT.more » « less
An official website of the United States government

