- Award ID(s):
- 1935980
- PAR ID:
- 10355471
- Date Published:
- Journal Name:
- ArXivorg
- ISSN:
- 2331-8422
- Page Range / eLocation ID:
- arXiv:2204.03715
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We present estimates for the number of supermassive black holes (SMBHs) for which the next-generation Event Horizon Telescope (ngEHT) can identify the black hole “shadow”, along with estimates for how many black hole masses and spins the ngEHT can expect to constrain using measurements of horizon-resolved emission structure. Building on prior theoretical studies of SMBH accretion flows and analyses carried out by the Event Horizon Telescope (EHT) collaboration, we construct a simple geometric model for the polarized emission structure around a black hole, and we associate parameters of this model with the three physical quantities of interest. We generate a large number of realistic synthetic ngEHT datasets across different assumed source sizes and flux densities, and we estimate the precision with which our defined proxies for physical parameters could be measured from these datasets. Under April weather conditions and using an observing frequency of 230 GHz, we predict that a “Phase 1” ngEHT can potentially measure ∼50 black hole masses, ∼30 black hole spins, and ∼7 black hole shadows across the entire sky.more » « less
-
Abstract The interaction between the supermassive black hole at the centre of the Milky Way, Sagittarius A*, and its accretion disk occasionally produces high-energy flares seen in X-ray, infrared and radio. One proposed mechanism that produces flares is the formation of compact, bright regions that appear within the accretion disk and close to the event horizon. Understanding these flares provides a window into accretion processes. Although sophisticated simulations predict the formation of these flares, their structure has yet to be recovered by observations. Here we show a three-dimensional reconstruction of an emission flare recovered from Atacama Large Millimeter/Submillimeter Array light curves observed on 11 April 2017. Our recovery shows compact, bright regions at a distance of roughly six times the event horizon. Moreover, it suggests a clockwise rotation in a low-inclination orbital plane, consistent with prior studies by GRAVITY and the Event Horizon Telescope. To recover this emission structure, we solve an ill-posed tomography problem by integrating a neural three-dimensional representation with a gravitational model for black holes. Although the recovery is subject to, and sometimes sensitive to, the model assumptions, under physically motivated choices, our results are stable and our approach is successful on simulated data.
-
null (Ed.)ABSTRACT Large-amplitude Sgr A* near-infrared (NIR) flares result from energy injection into electrons near the black hole event horizon. Astrometry data show continuous rotation of the emission region during bright flares, and corresponding rotation of the linear polarization angle. One broad class of physical flare models invokes magnetic reconnection. Here, we show that such a scenario can arise in a general relativistic magnetohydrodynamic simulation of a magnetically arrested disc. Saturation of magnetic flux triggers eruption events, where magnetically dominated plasma is expelled from near the horizon and forms a rotating, spiral structure. Dissipation occurs via reconnection at the interface of the magnetically dominated plasma and surrounding fluid. This dissipation is associated with large increases in NIR emission in models of Sgr A*, with durations and amplitudes consistent with the observed flares. Such events occur at roughly the time-scale to re-accumulate the magnetic flux from the inner accretion disc, ≃10 h for Sgr A*. We study NIR observables from one sample event to show that the emission morphology tracks the boundary of the magnetically dominated region. As the region rotates around the black hole, the NIR centroid and linear polarization angle both undergo continuous rotation, similar to the behaviour seen in Sgr A* flares.more » « less
-
Abstract We study the magnetospheric evolution of a nonaccreting spinning black hole (BH) with an initially inclined split monopole magnetic field by means of 3D general relativistic magnetohydrodynamic simulations. This serves as a model for a neutron star (NS) collapse or a BH–NS merger remnant after the inherited magnetosphere has settled into a split monopole field creating a striped wind. We show that the initially inclined split monopolar current sheet aligns over time with the BH equatorial plane. The inclination angle evolves exponentially toward alignment, with an alignment timescale that is inversely proportional to the square of the BH angular velocity, where higher spin results in faster alignment. Furthermore, magnetic reconnection in the current sheet leads to exponential decay of event-horizon-penetrating magnetic flux with nearly the same timescale for all considered BH spins. In addition, we present relations for the BH mass and spin in terms of the period and alignment timescale of the striped wind. The explored scenario of a rotating, aligning, and reconnecting current sheet can potentially lead to multimessenger electromagnetic counterparts to a gravitational-wave event due to the acceleration of particles powering high-energy radiation, plasmoid mergers resulting in coherent radio signals, and pulsating emission due to the initial misalignment of the BH magnetosphere.
-
Abstract A black hole (BH) traveling through a uniform, gaseous medium is described by Bondi–Hoyle–Lyttleton (BHL) accretion. If the medium is magnetized, then the black hole can produce relativistic outflows. We performed the first 3D, general-relativistic magnetohydrodynamic simulations of BHL accretion onto rapidly rotating black holes using the
H-AMR code, where we mainly varied the strength of a background magnetic field that threads the medium. We found that the ensuing accretion continuously drags the magnetic flux to the BH, which accumulates near the event horizon until it becomes dynamically important. Depending on the strength of the background magnetic field, the BHs can sometimes launch relativistic jets with high enough power to drill out of the inner accretion flow, become bent by the headwind, and escape to large distances. For stronger background magnetic fields, the jets are continuously powered, while at weaker field strengths they are intermittent, turning on and off depending on the fluctuating gas and magnetic flux distributions near the event horizon. We find that our jets reach extremely high efficiencies of ∼100%–300%, even in the absence of an accretion disk. We also calculated the drag forces exerted by the gas onto to the BH and found that the presence of magnetic fields causes the drag forces to be much less efficient than in unmagnetized BHL accretion. They can even sometimes become negative, accelerating the BH rather than slowing it down. Our results extend classical BHL accretion to rotating BHs moving through magnetized media, and demonstrate that accretion and drag are significantly altered in this environment.