skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Generalized Lieb-Schultz-Mattis theorem on bosonic symmetry protected topological phases
We propose and prove a family of generalized Lieb-Schultz-Mattis~(LSM) theorems for symmetry protected topological~(SPT) phases on boson/spin models in any dimensions.The ``conventional'' LSM theorem, applicable to e.g. any translation invariant system with an odd number of spin-1/2 particles per unit cell, forbids a symmetric short-range-entangled ground state in such a system.Here we focus on systems with no LSM anomaly, where global/crystalline symmetries and fractional spins within the unit cell ensure that any symmetric SRE ground state must be a non-trivial SPT phase with anomalous boundary excitations.Depending on models, they can be either strong or ``higher-order'' crystalline SPT phases, characterized by non-trivial surface/hinge/corner states.Furthermore, given the symmetry group and the spatial assignment of fractional spins, we are able to determine all possible SPT phases for a symmetric ground state, using the real space construction for SPT phases based on the spectral sequence of cohomology theory.We provide examples in one, two and three spatial dimensions, and discuss possible physical realization of these SPT phases based on condensation of topological excitations in fractionalized phases.  more » « less
Award ID(s):
1846109 1653769
PAR ID:
10320821
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
SciPost Physics
Volume:
11
Issue:
2
ISSN:
2542-4653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In systems with many local degrees of freedom, high-symmetry points in the phase diagram can provide an important starting point for the investigation of their properties throughout the phase diagram. In systems with both spin and orbital (or valley) degrees of freedom such a starting point gives rise to SU(4)-symmetric models.Here we consider SU(4)-symmetric "spin'' models, corresponding to Mott phases at half-filling, i.e. the six-dimensional representation of SU(4). This may be relevant to twisted multilayer graphene.In particular, we study the SU(4) antiferromagnetic "Heisenberg'' model on the triangular lattice, both in the classical limit and in the quantum regime. Carrying out a numerical study using the density matrix renormalization group (DMRG), we argue that the ground state is non-magnetic.We then derive a dimer expansion of the SU(4) spin model. An exact diagonalization (ED) study of the effective dimer model suggests that the ground state breaks translation invariance, forming a valence bond solid (VBS) with a 12-site unit cell.Finally, we consider the effect of SU(4)-symmetry breaking interactions due to Hund's coupling, and argue for a possible phase transition between a VBS and a magnetically ordered state. 
    more » « less
  2. Abstract Quantum many-body systems away from equilibrium host a rich variety of exotic phenomena that are forbidden by equilibrium thermodynamics. A prominent example is that of discrete time crystals 1–8 , in which time-translational symmetry is spontaneously broken in periodically driven systems. Pioneering experiments have observed signatures of time crystalline phases with trapped ions 9,10 , solid-state spin systems 11–15 , ultracold atoms 16,17 and superconducting qubits 18–20 . Here we report the observation of a distinct type of non-equilibrium state of matter, Floquet symmetry-protected topological phases, which are implemented through digital quantum simulation with an array of programmable superconducting qubits. We observe robust long-lived temporal correlations and subharmonic temporal response for the edge spins over up to 40 driving cycles using a circuit of depth exceeding 240 and acting on 26 qubits. We demonstrate that the subharmonic response is independent of the initial state, and experimentally map out a phase boundary between the Floquet symmetry-protected topological and thermal phases. Our results establish a versatile digital simulation approach to exploring exotic non-equilibrium phases of matter with current noisy intermediate-scale quantum processors 21 . 
    more » « less
  3. The search for topological systems has recently broadened to include random substitutional alloys, which lack the specific crystalline symmetries that protect topological phases, raising the question of whether topological properties can be preserved, or are modified by disorder. To address this question, we avoid methods that assumed at the outset high (averaged) symmetry, using instead a fully-atomistic, topological description of an alloy. Application to the (PbSe) 1−x (SnSe) x alloy reveals that topology survives in an interesting fashion: (a) spatial randomness removes the valley degeneracy (splitting ≥150 meV), leading to a sequential inversion of the split valley components over a range of compositions; (b) the absence of inversion lifts spin degenerates, leading to a Weyl semimetal phase without the need of an external magnetic field, an unexpected result, given that the alloy constituent compounds are inversion-symmetric. (a) and (b) underpin the topological physics at low symmetry and complete the missing understanding of possible topological phases within the normal-topological insulator transition. 
    more » « less
  4. A bstract In this work, we use Ising chain and Kitaev chain to check the validity of an earlier proposal in arXiv:2011.02859 that enriched fusion (higher) categories provide a unified categorical description of all gapped/gapless quantum liquid phases, including symmetry-breaking phases, topological orders, SPT/SET orders and CFT-type gapless quantum phases. In particular, we show explicitly that, in each gapped phase realized by these two models, the spacetime observables form a fusion category enriched in a braided fusion category such that its monoidal center is trivial. We also study the categorical descriptions of the boundaries of these models. In the end, we obtain a classification of and the categorical descriptions of all 1-dimensional (spatial dimension) gapped quantum phases with a bosonic/fermionic finite onsite symmetry. 
    more » « less
  5. We investigate the interplay of generalized global symmetries in 2+1 dimensions by introducing a lattice model that couples a ZN clock model to a ZN gauge theory via a topological interaction. This coupling binds the charges of one symmetry to the disorder operators of the other, and when these composite objects condense, they give rise to emergent generalized symmetries with mixed ’t Hooft anomalies. These anomalies result in phases with ordinary symmetry breaking, topological order, and symmetry-protected topological (SPT) order, where the different types of order are not independent but intimately related. We further explore the gapped boundary states of these exotic phases and develop theories for phase transitions between them. Additionally, we extend our lattice model to incorporate a non-invertible global symmetry, which can be spontaneously broken, leading to domain walls with non-trivial fusion rules. 
    more » « less