Abstract It remains a major challenge to identify the genes and mutations that lead to plant sexual differentiation. Here, we study the structure and evolution of the sex-determining region (SDR) inVitisspecies. We report an improved, chromosome-scale Cabernet Sauvignon genome sequence and the phased assembly of nine wild and cultivated grape genomes. By resolving twentyVitisSDR haplotypes, we compare male, female, and hermaphrodite haplotype structures and identify sex-linked regions. Coupled with gene expression data, we identify a candidate male-sterility mutation in theVviINP1gene and potential female-sterility function associated with the transcription factorVviYABBY3. Our data suggest that dioecy has been lost during domestication through a rare recombination event between male and female haplotypes. This work significantly advances the understanding of the genetic basis of sex determination inVitisand provides the information necessary to rapidly identify sex types in grape breeding programs.
more »
« less
Diploid chromosome-scale assembly of the Muscadinia rotundifolia genome supports chromosome fusion and disease resistance gene expansion during Vitis and Muscadinia divergence
Abstract Muscadinia rotundifolia, the muscadine grape, has been cultivated for centuries in the southeastern United States. M. rotundifolia is resistant to many of the pathogens that detrimentally affect Vitis vinifera, the grape species commonly used for winemaking. For this reason, M. rotundifolia is a valuable genetic resource for breeding. Single-molecule real-time reads were combined with optical maps to reconstruct the two haplotypes of each of the 20 M. rotundifolia cv. Trayshed chromosomes. The completeness and accuracy of the assembly were confirmed using a high-density linkage map. Protein-coding genes were annotated using an integrated and comprehensive approach. This included using full-length cDNA sequencing (Iso-Seq) to improve gene structure and hypothetical spliced variant predictions. Our data strongly support that Muscadinia chromosomes 7 and 20 are fused in Vitis and pinpoint the location of the fusion in Cabernet Sauvignon and PN40024 chromosome 7. Disease-related gene numbers in Trayshed and Cabernet Sauvignon were similar, but their clustering locations were different. A dramatic expansion of the Toll/Interleukin-1 Receptor-like Nucleotide-Binding Site Leucine-Rich Repeat (TIR-NBS-LRR) class was detected on Trayshed chromosome 12 at the Resistance to Uncinula necator 1 (RUN1)/Resistance to Plasmopara viticola 1 (RPV1) locus, which confers strong dominant resistance to powdery and downy mildews. A genome browser, annotation, and Blast tool for Trayshed are available at www.grapegenomics.com.
more »
« less
- Award ID(s):
- 1741627
- PAR ID:
- 10320847
- Editor(s):
- Morrell, P
- Date Published:
- Journal Name:
- G3 Genes|Genomes|Genetics
- Volume:
- 11
- Issue:
- 4
- ISSN:
- 2160-1836
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Cultivated grapevines are commonly grafted on closely related species to cope with specific biotic and abiotic stress conditions. The three North American Vitis species V. riparia , V. rupestris , and V. berlandieri , are the main species used for breeding grape rootstocks. Here, we report the diploid chromosome-scale assembly of three widely used rootstocks derived from these species: Richter 110 (110R), Kober 5BB, and 101–14 Millardet et de Grasset (Mgt). Draft genomes of the three hybrids were assembled using PacBio HiFi sequences at an average coverage of 53.1 X-fold. Using the tool suite HaploSync, we reconstructed the two sets of nineteen chromosome-scale pseudomolecules for each genome with an average haploid genome size of 494.5 Mbp. Residual haplotype switches were resolved using shared-haplotype information. These three reference genomes represent a valuable resource for studying the genetic basis of grape adaption to biotic and abiotic stresses, and designing trait-associated markers for rootstock breeding programs.more » « less
-
Abstract Our understanding on the interplay between gene functionality and gene arrangement at different chromosome scales relies on a few Diptera and the honeybee, species with quality reference genome assemblies, accurate gene annotations, and abundant transcriptome data. Using recently generated ‘omic resources in the monarch butterfly Danaus plexippus, a species with many more and smaller chromosomes relative to Drosophila species and the honeybee, we examined the organization of genes preferentially expressed at broadly defined developmental stages (larva, pupa, adult males, and adult females) at both fine and whole-chromosome scales. We found that developmental stage–regulated genes do not form more clusters, but do form larger clusters, than expected by chance, a pattern consistent across the gene categories examined. Notably, out of the 30 chromosomes in the monarch genome, 12 of them, plus the fraction of the chromosome Z that corresponds to the ancestral Z in other Lepidoptera, were found enriched for developmental stage–regulated genes. These two levels of nonrandom gene organization are not independent as enriched chromosomes for developmental stage–regulated genes tend to harbor disproportionately large clusters of these genes. Further, although paralogous genes were overrepresented in gene clusters, their presence is not enough to explain two-thirds of the documented cases of whole-chromosome enrichment. The composition of the largest clusters often included paralogs from more than one multigene family as well as unrelated single-copy genes. Our results reveal intriguing patterns at the whole-chromosome scale in D. plexippus while shedding light on the interplay between gene expression and chromosome organization beyond Diptera and Hymenoptera.more » « less
-
CitationSnead, A.A., Meng, F., Largotta, N. et al. Diploid chromosome-level genome assembly and annotation for Lycorma delicatula. Sci Data 12, 579 (2025). https://doi.org/10.1038/s41597-025-04854-8AbstractThe spotted lanternfly (Lycorma delicatula) is a planthopper species (Hemiptera: Fulgoridae) native to China but invasive in South Korea, Japan, and the United States where it is a significant threat to agriculture. Hence, genomic resources are critical to both management and understand the genomic characteristics of successful invaders. Here, we report a haplotype-phased genome assembly and annotation using PacBio long-read sequencing, Hi-C technology, and RNA-seq data. The 2.2 Gbp genome comprises 13 chromosomes, and our whole genome sequencing of eighty-two adults indicated chromosome four as the sex chromosome and anXO sex-determination system.We identified over 12,000 protein coding genes and performed functional annotation, facilitating identification of several candidate genes which may hold importance for spotted lanternfly control. Both the assemblies and annotations were highly complete with over 96% of BUSCO genes complete regardless of the database employed (i.e., Eukaryota, Arthropoda, Insecta). This reference-quality genome will serve as an important resource for both development and optimization of management practices for the spotted lanternfly and invasive genomics as a whole.Description of the data and file structureThis dataset contains the haplotype-phased chromosome-level genome assembly of the spotted lanternfly (Lycorma delicatula) described and published in Snead & Meng et al. (in review). The genome combined long-read data and HiC data (SRA31402152-SRA31402153) to assembly and scaffold each haplotype. The annotation uses RNAseq data from 12 adults (SRA31411873-SRA31411894) to structurally annotate both haplotypes. Finally, whole-genome sequencing of 82 adult spotted lanternfly (bioproject PRJNA1136004) described in the metadata csv provided was used to identify punitive sex chromosomes. The dataset also include GO results for each chromosome not explicitly described in the results of the manuscript.Files and variablesFile: SLF_Hap1.fastaDescription: A fasta file of the assembled genome for the cleaned 13 chromosome haplotype 1 assembly.File: SLF_Hap2.fastaDescription: A fasta file of the assembled genome for the cleaned 13 chromosome haplotype 2 assembly.File: SLF_Hap1_Repeats.gffDescription: A gff file of the repeats annotated in the cleaned 13 chromosome haplotype 1 assembly.File: SLF_Hap2_Repeats.gffDescription: A gff file of the repeats annotated in the cleaned 13 chromosome haplotype 2 assembly.File: SLF_Hap1.gffDescription: A structural annotation of the 13 chromosome haplotype 1 assembly with functional annotations.File: SLF_Hap2.gffDescription: A structural annotation of the 13 chromosome haplotype 2 assembly with functional annotations.File: GO_plot_chr_1.pngDescription: An image of the top 20 GO term results for chromosome 1.File: GO_plot_chr_2.pngDescription: An image of the top 20 GO term results for chromosome 2.File: GO_plot_chr_3.pngDescription: An image of the top 20 GO term results for chromosome 3.File: GO_plot_chr_8.pngDescription: An image of the top 20 GO term results for chromosome 8.File: GO_plot_chr_5.pngDescription: An image of the top 20 GO term results for chromosome 5.File: GO_plot_chr_4.pngDescription: An image of the top 20 GO term results for chromosome 4.File: GO_plot_chr_6.pngDescription: An image of the top 20 GO term results for chromosome 6.File: GO_plot_chr_7.pngDescription: An image of the top 20 GO term results for chromosome 7.File: GO_plot_chr_11.pngDescription: An image of the top 20 GO term results for chromosome 11.File: GO_plot_chr_9.pngDescription: An image of the top 20 GO term results for chromosome 9.File: GO_plot_chr_10.pngDescription: An image of the top 20 GO term results for chromosome 10.File: GO_plot_chr_12.pngDescription: An image of the top 20 GO term results for chromosome 12.File: GO_plot_chr_13.pngDescription: An image of the top 20 GO term results for chromosome 13.File: SLF_Samples_SRA.csvDescription: A csv with the sequencing information, SRA numbers, and sexes of the adults used in to identify the putative sex chromosome.File: SLF_RNAseq_Metadata.csvDescription: A csv with the sequencing information, SRA numbers, and other metadata for the RNAseq used to annotation the genomes.Variablesaccession: The SRA accession numberstudy: The studyobject_status: If the NCBI submission was new or not.bioproject_accession: The bioproject accession numberbiosample_accession: The Biosample accession numberlibrary_ID: The ID used to identify that genomic library.title: The title of the study (the bioproject)library_strategy: Specific sequencing technique used to prepare the library.library_source: The biological material used to create the sequencing library.library_selection: The library preparation method.library_layout: The arrangement of reads within the sequencing library.platform: The sequencing platform.instrument_model: The model of the sequences.design_description: Description of the study design.filetype: Type of filefilename: First filefilename2: Second filesex: The biological sex of the adult.Code/softwareThe initial haplotype-phased scaffolded genome was assembled by Dovetail Genomics (Cantata Bio) with standard software outlined in the methods with default settings. Scripts for the remaining work including annotation, gene ontology enrichment, and other analyses are located in the Github repository (https://github.com/anthonysnead/SLF-Genome-Assembly(opens in new window)).Access informationOther publicly accessible locations of the data:The raw sequencing data and the annotated haplotype-phased genome assembly of Lycorma delicatula have been deposited at the National Center for Biotechnology Information (NCBI). The Hi-C and HiFi data can be found under SRA31402152 and SRA31402153. The RNA-seq data can be found under SRA31411873-SRA31411894, while the DNA-seq data can be found under bioproject PRJNA1136004.more » « less
-
Sethuraman, A (Ed.)Abstract Spiny lizards in the genus Sceloporus are a model system among squamate reptiles for studies of chromosomal evolution. While most pleurodont iguanians retain an ancestral karyotype formula of 2n = 36 chromosomes, Sceloporus exhibits substantial karyotype variation ranging from 2n = 22 to 46 chromosomes. We present two annotated chromosome-scale genome assemblies for the Plateau Fence Lizard (Sceloporus tristichus) to facilitate research on the role of pericentric inversion polymorphisms on adaptation and speciation. Based on previous karyotype work using conventional staining, the S. tristichus genome is characterized as 2n = 22 with six pairs of macrochromosomes and five pairs of microchromosomes and a pericentric inversion polymorphism on chromosome 7 that is geographically variable. We provide annotated, chromosome-scale genomes for two lizards located at opposite ends of a dynamic hybrid zone that are each fixed for different inversion polymorphisms. The assembled genomes are 1.84–1.87 Gb (1.72 Gb for scaffolds mapping to chromosomes) with a scaffold N50 of 267.5 Mb. Functional annotation of the genomes resulted in ∼15K predicted gene models. Our assemblies confirmed the presence of a 4.62-Mb pericentric inversion on chromosome 7, which contains 62 annotated coding genes with known functions. In addition, we collected population genomics data using double digest RAD-sequencing for 44 S. tristichus to estimate population structure and phylogeny across the Colorado Plateau. These new genomic resources provide opportunities to perform genomic scans and investigate the formation and spread of pericentric inversions in a naturally occurring hybrid zone.more » « less
An official website of the United States government

