skip to main content

This content will become publicly available on May 2, 2023

Title: Here To Stay: A Quantitative Comparison of Virtual Object Stability in Markerless Mobile AR
Mobile augmented reality (AR) has the potential to enable immersive, natural interactions between humans and cyber-physical systems. In particular markerless AR, by not relying on fiducial markers or predefined images, provides great convenience and flexibility for users. However, unwanted virtual object movement frequently occurs in markerless smartphone AR due to inaccurate scene understanding, and resulting errors in device pose tracking. We examine the factors which may affect virtual object stability, design experiments to measure it, and conduct systematic quantitative characterizations across six different user actions and five different smartphone configurations. Our study demonstrates noticeable instances of spatial instability in virtual objects in all but the simplest settings (with position errors of greater than 10cm even on the best-performing smartphones), and underscores the need for further enhancements to pose tracking algorithms for smartphone-based markerless AR.
Authors:
; ; ;
Award ID(s):
2046072 1903136 1908051
Publication Date:
NSF-PAR ID:
10320884
Journal Name:
Proc. IEEE/ACM Workshop on Cyber-Physical-Human System Design and Implementation
Sponsoring Org:
National Science Foundation
More Like this
  1. For optical see-through augmented reality (AR), a new method for measuring the perceived three-dimensional location of virtual objects is presented, where participants verbally report a virtual object’s location relative to both a vertical and horizontal grid. The method is tested with a small (1.95 × 1.95 × 1.95 cm) virtual object at distances of 50 to 80 cm, viewed through a Microsoft HoloLens 1 st generation AR display. Two experiments examine two different virtual object designs, whether turning in a circle between reported object locations disrupts HoloLens tracking, and whether accuracy errors, including a rightward bias and underestimated depth, mightmore »be due to systematic errors that are restricted to a particular display. Turning in a circle did not disrupt HoloLens tracking, and testing with a second display did not suggest systematic errors restricted to a particular display. Instead, the experiments are consistent with the hypothesis that, when looking downwards at a horizontal plane, HoloLens 1 st generation displays exhibit a systematic rightward perceptual bias. Precision analysis suggests that the method could measure the perceived location of a virtual object within an accuracy of less than 1 mm.« less
  2. For optical, see-through augmented reality (AR), a new method for measuring the perceived three-dimensional location of a small virtual object is presented, where participants verbally report the virtual object's location relative to both a horizontal and vertical grid. The method is tested with a Microsoft HoloLens AR display, and examines two different virtual object designs, whether turning in a circle between reported object locations disrupts HoloLens tracking, and whether accuracy errors found with a HoloLens display might be due to systematic errors that are restricted to that particular display. Turning in a circle did not disrupt HoloLens tracking, and amore »second HoloLens did not suggest systematic errors restricted to a specific display. The proposed method could measure the perceived location of a virtual object to a precision of ~1 mm.« less
  3. We revisit the performance of a canonical system design for edge-assisted AR that simply combines off-the-shelf H.264 video encoding with a standard object tracking technique. Our experimental analysis shows that the simple canonical design for edge-assisted object detection can achieve within 3.07%/1.51% of the accuracy of ideal offloading (which assumes infinite network bandwidth and the total network transmission time of a single RTT) under LTE/5G mmWave networks. Our findings suggest that recent trend towards sophisticated system architecture design for edge-assisted AR appears unnecessary. We provide insights for why video compression plus on-device object tracking is so effective in edge-assisted objectmore »detection, draw implications to edge-assisted AR research, and pose open problems that warrant further investigation into this surprise finding.« less
  4. This poster presents the use of Augmented Reality (AR) and Virtual Reality (VR) to tackle 4 amongst the “14 Grand Challenges for Engineering in the 21st Century” identified by National Academy of Engineering. AR and VR are the technologies of the present and the future. AR creates a composite view by adding digital content to a real world view, often by using the camera of a smartphone and VR creates an immersive view where the user’s view is often cut off from the real world. The 14 challenges identify areas of science and technology that are achievable and sustainable tomore »assist people and the planet to prosper. The 4 challenges tackled using AR/VR application in this poster are: Enhance virtual reality, Advance personalized learning, Provide access to clean water, and Make solar energy affordable. The solar system VR application is aimed at tackling two of the engineering challenges: (1) Enhance virtual reality and (2) Advance personalized learning. The VR application assists the user in visualizing and understanding our solar system by using a VR headset. It includes an immersive 360 degree view of our solar system where the user can use controllers to interact with celestial bodies-related information and to teleport to different points in the space to have a closer look at the planets and the Sun. The user has six degrees of freedom. The AR application for water tackles the engineering challenge: “Provide access to clean water”. The AR water application shows information on drinking water accessibility and the eco-friendly usage of bottles over plastic cups within the department buildings inside Auburn University. The user of the application has an augmented view of drinking water information on a smartphone. Every time the user points the smartphone camera towards a building, the application will render a composite view with drinking water information associated to the building. The Sun path visualization AR application tackles the engineering challenge: “Make solar energy affordable”. The application helps the user visualize sun path at a selected time and location. The sun path is augmented in the camera view of the device when the user points the camera towards the sky. The application provides information on sun altitude and azimuth. Also, it provides the user with sunrise and sunset data for a selected day. The information provided by the application can aid the user with effective solar panel placement. Using AR and VR technology to tackle these challenges enhances the user experience. The information from these applications are better curated and easily visualized, thus readily understandable by the end user. Therefore, usage of AR and VR technology to tackle these type of engineering challenges looks promising.« less
  5. null (Ed.)
    Mobile Augmented Reality (AR) provides immersive experiences by aligning virtual content (holograms) with a view of the real world. When a user places a hologram it is usually expected that like a real object, it remains in the same place. However, positional errors frequently occur due to inaccurate environment mapping and device localization, to a large extent determined by the properties of natural visual features in the scene. In this demonstration we present SceneIt, the first visual environment rating system for mobile AR based on predictions of hologram positional error magnitude. SceneIt allows users to determine if virtual content placedmore »in their environment will drift noticeably out of position, without requiring them to place that content. It shows that the severity of positional error for a given visual environment is predictable, and that this prediction can be calculated with sufficiently high accuracy and low latency to be useful in mobile AR applications.« less