Mobile augmented reality (AR) has a wide range of promising applications, but its efficacy is subject to the impact of environment texture on both machine and human perception. Performance of the machine perception algorithm underlying accurate positioning of virtual content, visual-inertial SLAM (VI-SLAM), is known to degrade in low-texture conditions, but there is a lack of data in realistic scenarios. We address this through extensive experiments using a game engine-based emulator, with 112 textures and over 5000 trials. Conversely, human task performance and response times in AR have been shown to increase in environments perceived as textured. We investigate and provide encouraging evidence for invisible textures, which result in good VI-SLAM performance with minimal impact on human perception of virtual content. This arises from fundamental differences between VI-SLAM-based machine perception, and human perception as described by the contrast sensitivity function. Our insights open up exciting possibilities for deploying ambient IoT devices that display invisible textures, as part of systems which automatically optimize AR environments.
more »
« less
Environment Texture Optimization for Augmented Reality
Augmented reality (AR) platforms now support persistent, markerless experiences, in which virtual content appears in the same place relative to the real world, across multiple devices and sessions. However, optimizing environments for these experiences remains challenging; virtual content stability is determined by the performance of device pose tracking, which depends on recognizable environment features, but environment texture can impair human perception of virtual content. Low-contrast 'invisible textures' have recently been proposed as a solution, but may result in poor tracking performance when combined with dynamic device motion. Here, we examine the use of invisible textures in detail, starting with the first evaluation in a realistic AR scenario. We then consider scenarios with more dynamic device motion, and conduct extensive game engine-based experiments to develop a method for optimizing invisible textures. For texture optimization in real environments, we introduce MoMAR, the first system to analyze motion data from multiple AR users, which generates guidance using situated visualizations. We show that MoMAR can be deployed while maintaining an average frame rate > 59fps, for five different devices. We demonstrate the use of MoMAR in a realistic case study; our optimized environment texture allowed users to complete a task significantly faster (p=0.003) than a complex texture.
more »
« less
- PAR ID:
- 10546624
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
- Volume:
- 8
- Issue:
- 3
- ISSN:
- 2474-9567
- Page Range / eLocation ID:
- 1 to 26
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Virtual content instability caused by device pose tracking error remains a prevalent issue in markerless augmented reality (AR), especially on smartphones and tablets. However, when examining environments which will host AR experiences, it is challenging to determine where those instability artifacts will occur; we rarely have access to ground truth pose to measure pose error, and even if pose error is available, traditional visualizations do not connect that data with the real environment, limiting their usefulness. To address these issues we present SiTAR (Situated Trajectory Analysis for Augmented Reality), the first situated trajectory analysis system for AR that incorporates estimates of pose tracking error. We start by developing the first uncertainty-based pose error estimation method for visual-inertial simultaneous localization and mapping (VI-SLAM), which allows us to obtain pose error estimates without ground truth; we achieve an average accuracy of up to 96.1% and an average FI score of up to 0.77 in our evaluations on four VI-SLAM datasets. Next, we present our SiTAR system, implemented for ARCore devices, combining a backend that supplies uncertainty-based pose error estimates with a frontend that generates situated trajectory visualizations. Finally, we evaluate the efficacy of SiTAR in realistic conditions by testing three visualization techniques in an in-the-wild study with 15 users and 13 diverse environments; this study reveals the impact both environment scale and the properties of surfaces present can have on user experience and task performance.more » « less
-
Demand is growing for markerless augmented reality (AR) experiences, but designers of the real-world spaces that host them still have to rely on inexact, qualitative guidelines on the visual environment to try and facilitate accurate pose tracking. Furthermore, the need for visual texture to support markerless AR is often at odds with human aesthetic preferences, and understanding how to balance these competing requirements is challenging due to the siloed nature of the relevant research areas. To address this, we present an integrated design methodology for AR spaces, that incorporates both tracking and human factors into the design process. On the tracking side, we develop the first VI-SLAM evaluation technique that combines the flexibility and control of virtual environments with real inertial data. We use it to perform systematic, quantitative experiments on the effect of visual texture on pose estimation accuracy; through 2000 trials in 20 environments, we reveal the impact of both texture complexity and edge strength. On the human side, we show how virtual reality (VR) can be used to evaluate user satisfaction with environments, and highlight how this can be tailored to AR research and use cases. Finally, we demonstrate our integrated design methodology with a case study on AR museum design, in which we conduct both VI-SLAM evaluations and a VR-based user study of four different museum environments.more » « less
-
null (Ed.)Mobile Augmented Reality (AR) provides immersive experiences by aligning virtual content (holograms) with a view of the real world. When a user places a hologram it is usually expected that like a real object, it remains in the same place. However, positional errors frequently occur due to inaccurate environment mapping and device localization, to a large extent determined by the properties of natural visual features in the scene. In this demonstration we present SceneIt, the first visual environment rating system for mobile AR based on predictions of hologram positional error magnitude. SceneIt allows users to determine if virtual content placed in their environment will drift noticeably out of position, without requiring them to place that content. It shows that the severity of positional error for a given visual environment is predictable, and that this prediction can be calculated with sufficiently high accuracy and low latency to be useful in mobile AR applications.more » « less
-
Numerous applications of Virtual Reality (VR) and Augmented Reality (AR) continue to emerge. However, many of the current mechanisms to provide input in those environments still require the user to perform actions (e.g., press a number of buttons, tilt a stick) that are not natural or intuitive. It would be desirable to enable users of 3D virtual environments to use natural hand gestures to interact with the environments. The implementation of a glove capable of tracking the movement and configuration of a user’s hand has been pursued by multiple groups in the past. One of the most recent approaches consists of tracking the motion of the hand and fingers using miniature sensor modules with magnetic and inertial sensors. Unfortunately, the limited quality of the signals from those sensors and the frequent deviation from the assumptions made in the design of their operations have prevented the implementation of a tracking glove able to achieve high performance and large-scale acceptance. This paper describes our development of a proof-of-concept glove that incorporates motion sensors and a signal processing algorithm designed to maintain high tracking performance even in locations that are challenging to these sensors, (e.g., where the geomagnetic field is distorted by nearby ferromagnetic objects). We describe the integration of the required components, the rationale and outline of the tracking algorithms and the virtual reality environment in which the tracking results drive the movements of the model of a hand. We also describe the protocol that will be used to evaluate the performance of the glove.more » « less
An official website of the United States government

