skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Novelty detection in early olfactory processing of the honey bee, Apis mellifera
Animals are constantly bombarded with stimuli, which presents a fundamental problem of sorting among pervasive uninformative stimuli and novel, possibly meaningful stimuli. We evaluated novelty detection behaviorally in honey bees as they position their antennae differentially in an air stream carrying familiar or novel odors. We then characterized neuronal responses to familiar and novel odors in the first synaptic integration center in the brain–the antennal lobes. We found that the neurons that exhibited stronger initial responses to the odor that was to be familiarized are the same units that later distinguish familiar and novel odors, independently of chemical identities. These units, including both tentative projection neurons and local neurons, showed a decreased response to the familiar odor but an increased response to the novel odor. Our results suggest that the antennal lobe may represent familiarity or novelty to an odor stimulus in addition to its chemical identity code. Therefore, the mechanisms for novelty detection may be present in early sensory processing, either as a result of local synaptic interaction or via feedback from higher brain centers.  more » « less
Award ID(s):
2014217
PAR ID:
10320890
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Skoulakis, Efthimios M.
Date Published:
Journal Name:
PLOS ONE
Volume:
17
Issue:
3
ISSN:
1932-6203
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Animals depend on fast and reliable detection of novel stimuli in their environment. Neurons in multiple sensory areas respond more strongly to novel in comparison to familiar stimuli. Yet, it remains unclear which circuit, cellular, and synaptic mechanisms underlie those responses. Here, we show that spike-timing-dependent plasticity of inhibitory-to-excitatory synapses generates novelty responses in a recurrent spiking network model. Inhibitory plasticity increases the inhibition onto excitatory neurons tuned to familiar stimuli, while inhibition for novel stimuli remains low, leading to a network novelty response. The generation of novelty responses does not depend on the periodicity but rather on the distribution of presented stimuli. By including tuning of inhibitory neurons, the network further captures stimulus-specific adaptation. Finally, we suggest that disinhibition can control the amplification of novelty responses. Therefore, inhibitory plasticity provides a flexible, biologically plausible mechanism to detect the novelty of bottom-up stimuli, enabling us to make experimentally testable predictions. 
    more » « less
  2. Abstract Distinguishing between nectar and non-nectar odors is challenging for animals due to shared compounds and varying ratios in complex mixtures. Changes in nectar production throughout the day and over the animal’s lifetime add to the complexity. The honeybee olfactory system, containing fewer than 1000 principal neurons in the early olfactory relay, the antennal lobe (AL), must learn to associate diverse volatile blends with rewards. Previous studies identified plasticity in the AL circuits, but its role in odor learning remains poorly understood. Using a biophysical computational model, tuned by in vivo electrophysiological data, and live imaging of the honeybee’s AL, we explored the neural mechanisms of plasticity in the AL. Our findings revealed that when trained with a set of rewarded and unrewarded odors, the AL inhibitory network suppresses responses to shared chemical compounds while enhancing responses to distinct compounds. This results in improved pattern separation and a more concise neural code. Our calcium imaging data support these predictions. Analysis of a graph convolutional neural network performing an odor categorization task revealed a similar mechanism for contrast enhancement. Our study provides insights into how inhibitory plasticity in the early olfactory network reshapes the coding for efficient learning of complex odors. 
    more » « less
  3. Abstract Sensory stimuli evoke spiking activities patterned across neurons and time that are hypothesized to encode information about their identity. Since the same stimulus can be encountered in a multitude of ways, how stable or flexible are these stimulus-evoked responses? Here we examine this issue in the locust olfactory system. In the antennal lobe, we find that both spatial and temporal features of odor-evoked responses vary in a stimulus-history dependent manner. The response variations are not random, but allow the antennal lobe circuit to enhance the uniqueness of the current stimulus. Nevertheless, information about the odorant identity is conf ounded due to this contrast enhancement computation. Notably, predictions from a linear logical classifier (OR-of-ANDs) that can decode information distributed in flexible subsets of neurons match results from behavioral experiments. In sum, our results suggest that a trade-off between stability and flexibility in sensory coding can be achieved using a simple computational logic. 
    more » « less
  4. Aitken et al. introduce a simple, biologically inspired model for synaptic plasticity that leads to distinct responses to novel versus familiar stimuli. Using an experimentally constrained model of a cortical circuit with plasticity at specific synapses, multiple types of complex novelty effects recently observed in experiment are simultaneously reproduced. 
    more » « less
  5. Abstract Using odors to find food and mates is one of the most ancient and highly conserved behaviors. Arthropods from flies to moths to crabs use broadly similar strategies to navigate toward odor sources—such as integrating flow information with odor information, comparing odor concentration across sensors, and integrating odor information over time. Because arthropods share many homologous brain structures—antennal lobes for processing olfactory information, mechanosensors for processing flow, mushroom bodies (or hemi-ellipsoid bodies) for associative learning, and central complexes for navigation, it is likely that these closely related behaviors are mediated by conserved neural circuits. However, differences in the types of odors they seek, the physics of odor dispersal, and the physics of locomotion in water, air, and on substrates mean that these circuits must have adapted to generate a wide diversity of odor-seeking behaviors. In this review, we discuss common strategies and specializations observed in olfactory navigation behavior across arthropods, and review our current knowledge about the neural circuits subserving this behavior. We propose that a comparative study of arthropod nervous systems may provide insight into how a set of basic circuit structures has diversified to generate behavior adapted to different environments. 
    more » « less