skip to main content

Title: PIN68 COVID-19 Simulator: An Interactive Tool to Inform COVID-19 Intervention Policy Decisions in the United States
; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Value in Health
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Objective This study aims at reviewing novel coronavirus disease (COVID-19) datasets extracted from PubMed Central articles, thus providing quantitative analysis to answer questions related to dataset contents, accessibility and citations. Methods We downloaded COVID-19-related full-text articles published until 31 May 2020 from PubMed Central. Dataset URL links mentioned in full-text articles were extracted, and each dataset was manually reviewed to provide information on 10 variables: (1) type of the dataset, (2) geographic region where the data were collected, (3) whether the dataset was immediately downloadable, (4) format of the dataset files, (5) where the dataset was hosted, (6) whether the dataset was updated regularly, (7) the type of license used, (8) whether the metadata were explicitly provided, (9) whether there was a PubMed Central paper describing the dataset and (10) the number of times the dataset was cited by PubMed Central articles. Descriptive statistics about these seven variables were reported for all extracted datasets. Results We found that 28.5% of 12 324 COVID-19 full-text articles in PubMed Central provided at least one dataset link. In total, 128 unique dataset links were mentioned in 12 324 COVID-19 full text articles in PubMed Central. Further analysis showed that epidemiological datasets accounted for themore »largest portion (53.9%) in the dataset collection, and most datasets (84.4%) were available for immediate download. GitHub was the most popular repository for hosting COVID-19 datasets. CSV, XLSX and JSON were the most popular data formats. Additionally, citation patterns of COVID-19 datasets varied depending on specific datasets. Conclusion PubMed Central articles are an important source of COVID-19 datasets, but there is significant heterogeneity in the way these datasets are mentioned, shared, updated and cited.« less
  2. COVID-19 seroprevalence changes over time, with infection, vaccination, and waning immunity. Seroprevalence estimates are needed to determine when increased COVID-19 vaccination coverage is needed, and when booster doses should be considered, to reduce the spread and disease severity of COVID-19 infection. We use an age-structured model including infection, vaccination and waning immunity to estimate the distribution of immunity to COVID-19 in the Canadian population. This is the first mathematical model to do so. We estimate that 60–80% of the Canadian population has some immunity to COVID-19 by late Summer 2021, depending on specific characteristics of the vaccine and the waning rate of immunity. Models results indicate that increased vaccination uptake in age groups 12–29, and booster doses in age group 50+ are needed to reduce the severity COVID-19 Fall 2021 resurgence.