Computational epidemiology aims to develop computer models and decision support systems that understand, predict, and control a disease’s spatiotemporal diffusion throughout a population. Researchers can use these models to forecast an epidemic’s future course, allocate scarce resources and assess depletion of current resources, infer disease parameters, and evaluate various interventions. Individual behavior and public policy are critical in understanding and controlling infectious diseases, and computational techniques provide a potentially powerful study tool. The COVID-19 pandemic has had significant social, health, economic, and political ramifications worldwide, and its impact will undoubtedly continue to grow in the coming months. Here we outlinemore »
Networked Epidemiology for COVID-19
Computational epidemiology aims to develop computer models and decision support systems that understand, predict, and control a disease’s spatiotemporal diffusion throughout a population. Researchers can use these models to forecast an epidemic’s future course, allocate scarce resources and assess depletion of current resources, infer disease parameters, and evaluate various interventions. Individual behavior and public policy are critical in understanding and controlling infectious diseases, and computational techniques provide a potentially powerful study tool. The COVID-19 pandemic has had significant social, health, economic, and political ramifications worldwide, and its impact will undoubtedly continue to grow in the coming months.Here we outline an approach to support the COVID-19 response with examples that are rooted in network science and data-driven modeling.
- Publication Date:
- NSF-PAR ID:
- 10213734
- Journal Name:
- Siam news
- ISSN:
- 1833-069X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Background The novel coronavirus SARS-CoV-2 and its associated disease, COVID-19, have caused worldwide disruption, leading countries to take drastic measures to address the progression of the disease. As SARS-CoV-2 continues to spread, hospitals are struggling to allocate resources to patients who are most at risk. In this context, it has become important to develop models that can accurately predict the severity of infection of hospitalized patients to help guide triage, planning, and resource allocation. Objective The aim of this study was to develop accurate models to predict the mortality of hospitalized patients with COVID-19 using basic demographics and easily obtainablemore »
-
Abstract Objective: The aim of this study was to investigate the performance of key hospital units associated with emergency care of both routine emergency and pandemic (COVID-19) patients under capacity enhancing strategies. Methods: This investigation was conducted using whole-hospital, resource-constrained, patient-based, stochastic, discrete-event, simulation models of a generic 200-bed urban U.S. tertiary hospital serving routine emergency and COVID-19 patients. Systematically designed numerical experiments were conducted to provide generalizable insights into how hospital functionality may be affected by the care of COVID-19 pandemic patients along specially designated care paths, under changing pandemic situations, from getting ready to turning all of itsmore »
-
As society increasingly relies on digital technologies in many different aspects, those who lack relevant access and skills are lagging increasingly behind. Among the underserved groups disproportionately affected by the digital divide are women who are transitioning from incarceration and seeking to reenter the workforce outside the carceral system (women-in-transition). Women-in-transition rarely have been exposed to sound technology education, as they have generally been isolated from the digital environment while in incarceration. Furthermore, while women have become the fastest-growing segment of the incarcerated population in the United States in recent decades, prison education and reentry programs are still not wellmore »
-
Objective: The purpose of this study was to understand the experiences of historically underrepresented graduate students, more than half of whom were enrolled in science, technology, engineering, and mathematics (STEM) disciplines, during the COVID-19 pandemic. This focus group study represents an initial stage in developing an intervention for historically underrepresented graduate students and their families. Background: Underrepresentation of graduate students of color in STEM has been attributed to a myriad of factors, including a lack of support systems. Familial support is an endorsed reason for persisting in graduate school. It is unclear what historically underrepresented graduate students’ experiences are duringmore »