skip to main content


Title: Real-time experiential geosimulation in virtual reality with immersion-emission
The aim of this work is to develop closer connectivity between real, lived human encounters in everyday life and geosimulation that might be tasked and designed to experiment with synthetic variations of those experiences. In particular, we propose that geosimulation can be used in close connection with virtual geographic environments and virtual reality environments to build human-in-the-loop interactivity between real people and geosimulation of the geographies that they experience. We introduce a novel scheme based on immersion and emission by socio-visual gaze to facilitate connectivity between human users and geosimulation. To examine the utility of the approach, we present a worked demonstration for examining road-crossing behavior in downtown settings for Brooklyn, NY.  more » « less
Award ID(s):
2027652 1729815
NSF-PAR ID:
10320966
Author(s) / Creator(s):
;
Date Published:
Journal Name:
GeoSim '21: Proceedings of the 4th ACM SIGSPATIAL International Workshop on GeoSpatial Simulation. November 2, 2021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Spatial Audio Data Immersive Experience (SADIE) project aims to identify new foundational relationships pertaining to human spatial aural perception, and to validate existing relationships. Our infrastructure consists of an intuitive interaction interface, an immersive exocentric sonification environment, and a layer-based amplitude-panning algorithm. Here we highlight the systemメs unique capabilities and provide findings from an initial externally funded study that focuses on the assessment of human aural spatial perception capacity. When compared to the existing body of literature focusing on egocentric spatial perception, our data show that an immersive exocentric environment enhances spatial perception, and that the physical implementation using high density loudspeaker arrays enables significantly improved spatial perception accuracy relative to the egocentric and virtual binaural approaches. The preliminary observations suggest that human spatial aural perception capacity in real-world-like immersive exocentric environments that allow for head and body movement is significantly greater than in egocentric scenarios where head and body movement is restricted. Therefore, in the design of immersive auditory displays, the use of immersive exocentric environments is advised. Further, our data identify a significant gap between physical and virtual human spatial aural perception accuracy, which suggests that further development of virtual aural immersion may be necessary before such an approach may be seen as a viable alternative. 
    more » « less
  2. In-person human interaction relies on our spatial perception of each other and our surroundings. Current remote communication tools partially address each of these aspects. Video calls convey real user representations but without spatial interactions. Augmented and Virtual Reality (AR/VR) experiences are immersive and spatial but often use virtual environments and characters instead of real-life representations. Bridging these gaps, we introduce DualStream, a system for synchronous mobile AR remote communication that captures, streams, and displays spatial representations of users and their surroundings. DualStream supports transitions between user and environment representations with different levels of visuospatial fidelity, as well as the creation of persistent shared spaces using environment snapshots. We demonstrate how DualStream can enable spatial communication in real-world contexts, and support the creation of blended spaces for collaboration. A formative evaluation of DualStream revealed that users valued the ability to interact spatially and move between representations, and could see DualStream fitting into their own remote communication practices in the near future. Drawing from these findings, we discuss new opportunities for designing more widely accessible spatial communication tools, centered around the mobile phone. 
    more » « less
  3. Abstract

    Emerging virtual and augmented reality technologies can transform human activities in myriad domains, lending tangible, embodied form to digital data, services, and information. Haptic technologies will play a critical role in enabling human to touch and interact with the contents of these virtual environments. The immense variety of skilled manual tasks that humans perform in real environments are only possible through the coordination of touch sensation, perception, and movement that together comprise the haptic modality. Consequently, many research groups are vigorously investigating haptic technologies for virtual reality. A longstanding research goal in this area has been to create haptic interfaces that allow their users to touch and feel plausibly realistic virtual objects. In this progress report, the perspective on this unresolved research challenge is shared, guided by the observation that no technologies can even approximately match the capabilities of the human sense of touch. Factors that have it challenging to engineer haptic technologies for virtual reality, including the extraordinary spatial and temporal tactile acuity of the skin, and the complex interplay between continuum mechanics, haptic perception, and interaction are identified. The perspective on how these challenges may be overcome through convergent research on haptic perception, mechanics, electronics, and material technologies is presented.

     
    more » « less
  4. To fluidly engage with the world, our brains must simultaneously represent both the scene in front of us and our memory of the immediate surrounding environment (i.e., local visuospatial context). How does the brain's functional architecture enable sensory and mnemonic representations to closely interface while also avoiding sensory-mnemonic interference? Here, we asked this question using first-person, head-mounted virtual reality and fMRI. Using virtual reality, human participants of both sexes learned a set of immersive, real-world visuospatial environments in which we systematically manipulated the extent of visuospatial context associated with a scene image in memory across three learning conditions, spanning from a single FOV to a city street. We used individualized, within-subject fMRI to determine which brain areas support memory of the visuospatial context associated with a scene during recall (Experiment 1) and recognition (Experiment 2). Across the whole brain, activity in three patches of cortex was modulated by the amount of known visuospatial context, each located immediately anterior to one of the three scene perception areas of high-level visual cortex. Individual subject analyses revealed that these anterior patches corresponded to three functionally defined place memory areas, which selectively respond when visually recalling personally familiar places. In addition to showing activity levels that were modulated by the amount of visuospatial context, multivariate analyses showed that these anterior areas represented the identity of the specific environment being recalled. Together, these results suggest a convergence zone for scene perception and memory of the local visuospatial context at the anterior edge of high-level visual cortex.

    SIGNIFICANCE STATEMENTAs we move through the world, the visual scene around us is integrated with our memory of the wider visuospatial context. Here, we sought to understand how the functional architecture of the brain enables coexisting representations of the current visual scene and memory of the surrounding environment. Using a combination of immersive virtual reality and fMRI, we show that memory of visuospatial context outside the current FOV is represented in a distinct set of brain areas immediately anterior and adjacent to the perceptually oriented scene-selective areas of high-level visual cortex. This functional architecture would allow efficient interaction between immediately adjacent mnemonic and perceptual areas while also minimizing interference between mnemonic and perceptual representations.

     
    more » « less
  5. Gonzalez, D. (Ed.)

    Today’s research on human-robot teaming requires the ability to test artificial intelligence (AI) algorithms for perception and decision-making in complex real-world environments. Field experiments, also referred to as experiments “in the wild,” do not provide the level of detailed ground truth necessary for thorough performance comparisons and validation. Experiments on pre-recorded real-world data sets are also significantly limited in their usefulness because they do not allow researchers to test the effectiveness of active robot perception and control or decision strategies in the loop. Additionally, research on large human-robot teams requires tests and experiments that are too costly even for the industry and may result in considerable time losses when experiments go awry. The novel Real-Time Human Autonomous Systems Collaborations (RealTHASC) facility at Cornell University interfaces real and virtual robots and humans with photorealistic simulated environments by implementing new concepts for the seamless integration of wearable sensors, motion capture, physics-based simulations, robot hardware and virtual reality (VR). The result is an extended reality (XR) testbed by which real robots and humans in the laboratory are able to experience virtual worlds, inclusive of virtual agents, through real-time visual feedback and interaction. VR body tracking by DeepMotion is employed in conjunction with the OptiTrack motion capture system to transfer every human subject and robot in the real physical laboratory space into a synthetic virtual environment, thereby constructing corresponding human/robot avatars that not only mimic the behaviors of the real agents but also experience the virtual world through virtual sensors and transmit the sensor data back to the real human/robot agent, all in real time. New cross-domain synthetic environments are created in RealTHASC using Unreal Engine™, bridging the simulation-to-reality gap and allowing for the inclusion of underwater/ground/aerial autonomous vehicles, each equipped with a multi-modal sensor suite. The experimental capabilities offered by RealTHASC are demonstrated through three case studies showcasing mixed real/virtual human/robot interactions in diverse domains, leveraging and complementing the benefits of experimentation in simulation and in the real world.

     
    more » « less