skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Title: Real-time experiential geosimulation in virtual reality with immersion-emission
The aim of this work is to develop closer connectivity between real, lived human encounters in everyday life and geosimulation that might be tasked and designed to experiment with synthetic variations of those experiences. In particular, we propose that geosimulation can be used in close connection with virtual geographic environments and virtual reality environments to build human-in-the-loop interactivity between real people and geosimulation of the geographies that they experience. We introduce a novel scheme based on immersion and emission by socio-visual gaze to facilitate connectivity between human users and geosimulation. To examine the utility of the approach, we present a worked demonstration for examining road-crossing behavior in downtown settings for Brooklyn, NY.  more » « less
Award ID(s):
2027652 1729815
Author(s) / Creator(s):
Date Published:
Journal Name:
GeoSim '21: Proceedings of the 4th ACM SIGSPATIAL International Workshop on GeoSpatial Simulation. November 2, 2021
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Spatial Audio Data Immersive Experience (SADIE) project aims to identify new foundational relationships pertaining to human spatial aural perception, and to validate existing relationships. Our infrastructure consists of an intuitive interaction interface, an immersive exocentric sonification environment, and a layer-based amplitude-panning algorithm. Here we highlight the systemÔĺís unique capabilities and provide findings from an initial externally funded study that focuses on the assessment of human aural spatial perception capacity. When compared to the existing body of literature focusing on egocentric spatial perception, our data show that an immersive exocentric environment enhances spatial perception, and that the physical implementation using high density loudspeaker arrays enables significantly improved spatial perception accuracy relative to the egocentric and virtual binaural approaches. The preliminary observations suggest that human spatial aural perception capacity in real-world-like immersive exocentric environments that allow for head and body movement is significantly greater than in egocentric scenarios where head and body movement is restricted. Therefore, in the design of immersive auditory displays, the use of immersive exocentric environments is advised. Further, our data identify a significant gap between physical and virtual human spatial aural perception accuracy, which suggests that further development of virtual aural immersion may be necessary before such an approach may be seen as a viable alternative. 
    more » « less
  2. Abstract

    Emerging virtual and augmented reality technologies can transform human activities in myriad domains, lending tangible, embodied form to digital data, services, and information. Haptic technologies will play a critical role in enabling human to touch and interact with the contents of these virtual environments. The immense variety of skilled manual tasks that humans perform in real environments are only possible through the coordination of touch sensation, perception, and movement that together comprise the haptic modality. Consequently, many research groups are vigorously investigating haptic technologies for virtual reality. A longstanding research goal in this area has been to create haptic interfaces that allow their users to touch and feel plausibly realistic virtual objects. In this progress report, the perspective on this unresolved research challenge is shared, guided by the observation that no technologies can even approximately match the capabilities of the human sense of touch. Factors that have it challenging to engineer haptic technologies for virtual reality, including the extraordinary spatial and temporal tactile acuity of the skin, and the complex interplay between continuum mechanics, haptic perception, and interaction are identified. The perspective on how these challenges may be overcome through convergent research on haptic perception, mechanics, electronics, and material technologies is presented.

    more » « less
  3. To fluidly engage with the world, our brains must simultaneously represent both the scene in front of us and our memory of the immediate surrounding environment (i.e., local visuospatial context). How does the brain's functional architecture enable sensory and mnemonic representations to closely interface while also avoiding sensory-mnemonic interference? Here, we asked this question using first-person, head-mounted virtual reality and fMRI. Using virtual reality, human participants of both sexes learned a set of immersive, real-world visuospatial environments in which we systematically manipulated the extent of visuospatial context associated with a scene image in memory across three learning conditions, spanning from a single FOV to a city street. We used individualized, within-subject fMRI to determine which brain areas support memory of the visuospatial context associated with a scene during recall (Experiment 1) and recognition (Experiment 2). Across the whole brain, activity in three patches of cortex was modulated by the amount of known visuospatial context, each located immediately anterior to one of the three scene perception areas of high-level visual cortex. Individual subject analyses revealed that these anterior patches corresponded to three functionally defined place memory areas, which selectively respond when visually recalling personally familiar places. In addition to showing activity levels that were modulated by the amount of visuospatial context, multivariate analyses showed that these anterior areas represented the identity of the specific environment being recalled. Together, these results suggest a convergence zone for scene perception and memory of the local visuospatial context at the anterior edge of high-level visual cortex.

    SIGNIFICANCE STATEMENTAs we move through the world, the visual scene around us is integrated with our memory of the wider visuospatial context. Here, we sought to understand how the functional architecture of the brain enables coexisting representations of the current visual scene and memory of the surrounding environment. Using a combination of immersive virtual reality and fMRI, we show that memory of visuospatial context outside the current FOV is represented in a distinct set of brain areas immediately anterior and adjacent to the perceptually oriented scene-selective areas of high-level visual cortex. This functional architecture would allow efficient interaction between immediately adjacent mnemonic and perceptual areas while also minimizing interference between mnemonic and perceptual representations.

    more » « less
  4. Demand is growing for markerless augmented reality (AR) experiences, but designers of the real-world spaces that host them still have to rely on inexact, qualitative guidelines on the visual environment to try and facilitate accurate pose tracking. Furthermore, the need for visual texture to support markerless AR is often at odds with human aesthetic preferences, and understanding how to balance these competing requirements is challenging due to the siloed nature of the relevant research areas. To address this, we present an integrated design methodology for AR spaces, that incorporates both tracking and human factors into the design process. On the tracking side, we develop the first VI-SLAM evaluation technique that combines the flexibility and control of virtual environments with real inertial data. We use it to perform systematic, quantitative experiments on the effect of visual texture on pose estimation accuracy; through 2000 trials in 20 environments, we reveal the impact of both texture complexity and edge strength. On the human side, we show how virtual reality (VR) can be used to evaluate user satisfaction with environments, and highlight how this can be tailored to AR research and use cases. Finally, we demonstrate our integrated design methodology with a case study on AR museum design, in which we conduct both VI-SLAM evaluations and a VR-based user study of four different museum environments. 
    more » « less
  5. Modern robotics heavily relies on machine learning and has a growing need for training data. Advances and commercialization of virtual reality (VR) present an opportunity to use VR as a tool to gather such data for human-robot interactions. We present the Robot Interaction in VR simulator, which allows human participants to interact with simulated robots and environments in real-time. We are particularly interested in spoken interactions between the human and robot, which can be combined with the robot's sensory data for language grounding. To demonstrate the utility of the simulator, we describe a study which investigates whether a user's head pose can serve as a proxy for gaze in a VR object selection task. Participants were asked to describe a series of known objects, providing approximate labels for the focus of attention. We demonstrate that using a concept of gaze derived from head pose can be used to effectively narrow the set of objects that are the target of participants' attention and linguistic descriptions. 
    more » « less